

26-01-28 1

Memory Management

Adapted by Joseph Lunderville
from slides by Dr. Brian Fraser

and course material by Dr. Steve Ko

26-01-28 2

Topics

1)What is the layout of memory?

2)How does the heap work?
a)Getting space from the OS
b)Tracking free space
c) Freeing allocated space

26-01-28 3

Context
● Memory allocation/deallocation

– Heap is used for dynamically allocated memory
● Usually use: malloc() or calloc(), and free()

– How could we actually implement malloc()/free()?
(This will help us really understand low-level memory
management)

● We are not talking about physical memory here:
User processes can only use virtual memory, not
physical memory

26-01-28 4

Details
● Can find more info in OSTEP book (more depth than we

require, really)
– Chapter 13, The Abstraction: Address Spaces

https://pages.cs.wisc.edu/~remzi/OSTEP/vm-intro.pdf
– Chapter 14, Interlude: Memory API

https://pages.cs.wisc.edu/~remzi/OSTEP/vm-api.pdf
– Chapter 15, Free Space Management

https://pages.cs.wisc.edu/~remzi/OSTEP/vm-freespac
e.pdf

https://pages.cs.wisc.edu/~remzi/OSTEP/vm-intro.pdf
https://pages.cs.wisc.edu/~remzi/OSTEP/vm-api.pdf
https://pages.cs.wisc.edu/~remzi/OSTEP/vm-api.pdf
https://pages.cs.wisc.edu/~remzi/OSTEP/vm-api.pdf

5 26-01-28

Prerequisites

26-01-28 6

What You (Should) Already Know
● This lecture assumes you know:

– Data structures used for memory management –
array, struct (record type), linked lists

– How to use malloc() and free() in C
– How to implement a singly- and doubly-linked list
– The stack and the heap

● How variables are placed in stack and heap
● Scope and lifetime of variables in stack and heap

26-01-28 7

Activity - Linked Lists
struct Node {
 int data;
 struct Node *next;
};

// Create a new node with the given data
struct Node *createNode(int data) {
 struct Node *newNode
 = malloc(sizeof(*newNode));
 newNode->data = data;
 newNode->next = NULL;
 return newNode;
}

// Insert a new node at the end of list
void append(struct Node **head, int data) {
 // Code together!
}

// Traverse and print the linked list
void traverse(struct Node *head) {
 // Code together!
}

int main() {
 struct Node *head = NULL;

 // Append elements to the list
 append(&head, 1);
 append(&head, 2);
 append(&head, 3);

 // Traverse and print the list
 printf("Linked List: ");
 traverse(head);

 // Remember: free memory when done
 struct Node *current = head;
 while (current != NULL) {
 struct Node *temp = current;
 current = current->next;
 free(temp);
 }
 head = NULL;

 return 0;
}

Solution:
// Function to insert a new node at the end of the
linked list
void append(struct Node **head, int data) {
 struct Node *newNode = createNode(data);
 if (*head == NULL) {
 *head = newNode;
 } else {
 struct Node *current = *head;
 while (current->next != NULL) {
 current = current->next;
 }
 current->next = newNode;
 }
}

// Function to traverse and print the linked list
void traverse(struct Node *head) {
 struct Node *current = head;
 while (current != NULL) {
 printf("%d -> ", current->data);
 current = current->next;
 }
 printf("NULL\n");
}

26-01-28 8

Memory Layout

Text

Data
(initialized)

BSS
(uninitialized)

Heap
(grows ↑)

Kernel Address Space
(mapped into process’s

virtual memory)

Memory Mapping
(grows ↓)

Stack
(grows ↓)

Read onlyRead only

Our Focus Today!
malloc() to dynamically

allocate variables.

Our Focus Today!
malloc() to dynamically

allocate variables.

0xFFFF FFFF FFFF FFFF = (2n - 1)

0x0000 0000 0000 0000

Addresses

Libraries:
libc, libpthread..

Libraries:
libc, libpthread..

Program breakProgram break

Local variables,
stack frame

Local variables,
stack frame

Unallocated
space

Unallocated
space

Global & static
data

Global & static
data

“Block Starting
Symbol”

“Block Starting
Symbol”

CodeCode

9 26-01-28

brk() and sbrk()

26-01-28 10

Getting More Memory
● Program Break

– Used by Linux to mark end of heap
(actually end of BSS; but grows to be
heap)

– Above the program break is unallocated
space

– Consider – what does “unallocated” mean?
● More Space

– OS moves the program break higher to
expand the heap

– Linux uses brk() and sbrk() to move
the program break Text

Data
(initialized)

BSS
(uninitialized)

Heap
(grows ↑)

Kernel Address Space
(mapped into process’s

virtual memory)

Memory Mapping
(grows ↓)

Stack
(grows ↓)

26-01-28 11

man sbrk

● man sbrk
– OS increases size of heap
– It’s a syscall: overhead!

● Don’t call sbrk() often
– malloc() (user-level) calls

sbrk() (kernel) to get big
block of memory

– malloc() hands out small
pieces of memory for each
request

● How can malloc() do that?
– Allocation strategies
– Deallocation strategies

26-01-28 12

Audience Participation - Memory Layout
● Identify the labeled part

of the diagram

Text

Data
(initialized)

...
(uninitialized)

...
(grows ↑)

...

Memory Mapping
(grows ↓)

...
(grows ↓)Q1

Q2
Q3

a) BSS

b) Heap

c) Program Break

d) Stack

13 26-01-28

Managing Dynamic Memory
Overview

26-01-28 14

Sequential Fit Allocation
● There are many ways to write an allocator

– Real allocators optimize for common cases, and include debug features
– Our discussion is naive: we describe one allocation strategy in depth, and you

will use it in an assignment
– Still relevant because C-style allocators usually still operate in a broadly similar

way, but details will vary, and in the real world verify assumptions
● Why? “More robust” algorithms can perform worse (cache-unfriendliness,

lock requirements, maintenance effort)

● Alternative strategies not discussed (it’s a huge topic!)
– Segregated fit (buddy, small-object...)
– Custom allocators (pools, arenas...)
– Handle-based systems and defragmenting
– Automatic garbage collection

26-01-28 15

Memory Allocator
● Memory Allocator: manages the heap

– For each allocation request, it returns a pointer
to an unused (or free) region inside the heap

– It tracks of which parts of the heap are not used
● Fragmentation

– Over time the application allocates and frees
memory regions

– This fragments memory into broken up pockets
of used and freed memory (why?)

– Handle-based strategies (which we won’t go into)

Heap

Used

Used

Used

Used

Used

Used

Used

Freed

Freed

Freed

Freed

26-01-28 16

Track Free Space
● Track free regions (blocks) in a linked list

of free blocks
– We don't track used regions; we are

given back regions from calls to
free()

Heap

Used

Used

Used

Used

Used

Used

Used

Freed

Freed

Freed

Freed

26-01-28 17

Linked List Management

Used

Free

Head

Free

Head

Used

Free

Head

Used

Freed

Free

Head

Used

Freed

Free

Head

Used

Used

Another
allocate

Free 1st Block
Freed block goes

at head of list

Freed

Free

Head

Freed

Used

External Fragmentation
Repeated allocate/free

can fragment free space.

Allocate Memory
Pick first block that is
big enough; split it.

26-01-28 18

Linked List Management
● Free Blocks Linked List

– We have a linked list of free blocks
– Head points to the most recent free block

● Basics of Allocation – malloc()
– Pick a free block from the linked list
– Remove it from the linked list
– Split the free block into two blocks: allocated and free
– Insert the new free block back into the head of the linked list
– Return the allocated block to the caller

● Basics of Deallocation – free()
– Insert the given (freed) block at head of the linked list

26-01-28 19

Linked List Without Dynamic Allocation
● Linked List of Free Memory

– We’ve see how to manage free memory using a linked list of
free blocks

– But, how do we normally create nodes in a Linked List?
Dynamic allocation!

– So, how do we create a linked list without dynamic
allocation?

● In-Place Linked List (= Internal Nodes)
– Create a header on each free block to track size of the block

and pointer to next free block
– Perform coalescing: combine consecutive free blocks into a

larger single free block

26-01-28 20

In-Place Linked List
● Toy example with a heap size of

256 bytes
● Build linked-list of blocks
● Each free and allocated block

has a header
– Assume size and next are 8

bytes each (64-bit)

Head
Size

= free + header

Header
16 bytes

Free

next = null
size = 256 0

256
Address
(0-255)

Address of
next node

Heap

26-01-28 21

Example - In-Place Linked List

Free

next = null
size = 256

Allocated
(100 bytes)

next = null
size = 116

Free

next = null
size = 140

Allocated
(50 bytes)

next = null
size = 66

Free

next = null
size = 74

Allocated
(100 bytes)

next = null
size = 116 0

256

116

0

256

0

256

116

182

Free

next = 182
size = 116

Allocated
(50 bytes)

next = null
size = 66

Free

next = null
size = 74

0

256

116

182

Initial State
Free

50 bytes
Free

100 bytes
Allocate
100 bytes

Allocate
50 bytes

Free

next = 0
size = 66

Free

next = 182
size = 116

Free

next = null
size = 74

0

256

116

182

26-01-28 22

Audience Participation - Linked List
● What was the order in which these

blocks were freed? (in order of first
freed to last freed)

a) A then B then C

b) A then C then B

c) B then C then A

d) C then B then A

B

next = null
size = 66

C

next = 116
size = 116

A

next = 0
size = 74

256

116

182

0

Answer: C
List is in order A --> C --> B
So it’s the reverse order: BCA

26-01-28 23

External Fragmentation
● External Fragmentation

– Free memory is fragmented into smaller blocks
– But each allocation request can only be satisfied by a

single block (cannot split it up)
– Even if total free memory is enough, may not have

one contiguous free block to satisfy an allocation
request

● Internal Fragmentation
– Problem of unused space inside blocks (more on this

when we talk about virtual memory)

26-01-28 24

Coalescing
● Coalescing

– Process of combining
consecutive free blocks
into bigger blocks

– Some external
fragmentation is
unavoidable

– Fix what we can fix easily
Free

next = 182
size = 116

Free

next = 0
size = 66

Free

next = null
size = 74

Before

Free

next = null
size = 255

After
Coalescing

25 26-01-28

Finding a Free Block

26-01-28 26

Allocation Policy
● Allocating Memory

(malloc())
– Requires finding a big

enough memory block to
satisfy the request

Traverse
linked list of
free block

Traverse
linked list of
free block

Find
Big Enough

Block

Find
Big Enough

Block

Split block into
2 blocks

Split block into
2 blocks

Allocated Block
Requested size

(returned to caller)

Extra space
(new free block)

Link new free
space block as

head

Link new free
space block as

head

26-01-28 27

Allocation Policy: First Fit
● First Fit

– Find the first block that is big enough

● Advantage
– Implementation simplicity
– Fast: greedy algorithm, don’t consider a lot

of alternatives

● Disadvantage
– Can pollute the beginning of the free list

with (too-)small blocks
– Unpredictable, varies with list order

● For us, list order determined by free
order: FIFO

● Other policies are possible (next
fit/circular, LIFO, address order...)

Traverse
list

Traverse
list

Find
First Block

Find
First Block

Split
block
Split
block

Allocated
Block

Extra
space

New
head
New
head

26-01-28 28

Allocation Policy: Best Fit
● Best Fit

– Find the smallest free block that is
big enough

● Advantage
– Preserves large blocks for large

allocations
– Reuses exactly-same-size

allocations well (why might this be a
big advantage?)

– Predictable
● Disadvantage

– Slow: must search the entire list
(or: use a more complex ordered
data structure)

Traverse
list

Traverse
list

Find
Best Block

Find
Best Block

Split
block
Split
block

Allocated
Block

Extra
space

New
head
New
head

26-01-28 29

Allocation Policy: Worst Fit
● Worst Fit

– Find the largest free block
● Advantage

– Avoids creating unusably
small leftovers

● ...this time
● Disadvantage

– Also slow: must search the
entire list, like best fit

– Trends toward uniformly-
spaced blocks (why is this not
great?)

Traverse
list

Traverse
list

Find
Worst
Block

Find
Worst
Block

Split
block
Split
block

Allocated
Block

Extra
space

New
head
New
head

26-01-28 30

Audience Participation - Free Space
● A memory allocation system is asked to

allocate 50 bytes. Which block is
allocated if it is using...

– First fit
– Worst Fit
– Best Fit

a) A

b) B

c) C

d) None of them.

B

next = null
size = 66

C

next = 116
size = 116

A

next = 0
size = 74

256

116

182

0

First: A (actual free is 58 bytes)
Worst: C (actual free is 100 bytes)
Best: B (actual free is 50 bytes)

26-01-28 31

Summary
● Memory Segments

– text, data, BSS, heap, memory mapped, stack, kernel
– Program break and effect of brk() and sbrk()

● Memory Allocator
– Linked list of free memory
– New free blocks go first in the list

● Fragmentation
– External fragmentation
– Coalescing algorithm

● Allocation Policy
– First/best (smallest)/worst (largest) fit

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31

