Memory Management

Adapted by Joseph Lunderville
from slides by Dr. Brian Fraser
and course material by Dr. Steve Ko

26-01-28 1



1)What is the layout of memory?

2)How does the heap work?
a)Getting space from the OS

b)Tracking free space
c) Freeing allocated space

26-01-28 2



* Memory allocation/deallocation
- Heap is used for dynamically allocated memory

* Usually use: malloc() or calloc(), and free()
- How could we actually implement malloc()/free()?

(This will help us really understand low-level memory
management)

* We are not talking about physical memory here:

User processes can only use virtual memory, not
physical memory

26-01-28 3



* Can find more info in OSTEP book (more depth than we
require, really)
= Chapter 13, The Abstraction: Address Spaces
https://pages.cs.wisc.edu/~remzi/OSTEP/vm-intro.pdf

- Chapter 14, Interlude: Memory API
https://pages.cs.wisc.edu/~remzi/OSTEP/vm-api.pdf

- Chapter 15, Free Space Management

https://pages.cs.wisc.edu/~remzi/OSTEP/vm-freespac
e.pdf

26-01-28 4


https://pages.cs.wisc.edu/~remzi/OSTEP/vm-intro.pdf
https://pages.cs.wisc.edu/~remzi/OSTEP/vm-api.pdf
https://pages.cs.wisc.edu/~remzi/OSTEP/vm-api.pdf
https://pages.cs.wisc.edu/~remzi/OSTEP/vm-api.pdf

Prerequisites

26-01-28 5



What You (Should) Already Know

* This lecture assumes you know:
- Data structures used for memory management -
array, struct (record type), linked lists

- Howtousemalloc() and free() in C
- How to implement a singly- and doubly-linked list
- The stack and the heap

* How variables are placed in stack and heap

* Scope and lifetime of variables in stack and heap

26-01-28 6



Activity - Linked Lists

struct Node { int main() {

int data; struct Node *head = NULL;
struct Node *next;
}; // Append elements to the list
append(&head, 1);
// Create a new node with the given data append(&head, 2);
struct Node *createNode(int data) { append(&head, 3);
struct Node *newNode
= malloc(sizeof (*newNode)); // Traverse and print the list
newNode->data = data; printf("Linked List: ");
newNode->next = NULL; traverse(head);
return newNode;
} // Remember: free memory when done

struct Node *current = head;
while (current != NULL) {

// Insert a new node at the end of list struct Node *temp = current;
void append(struct Node **head, int data) { current = current->next;

// Code together! free(temp);
} }

head = NULL;

// Traverse and print the linked list
void traverse(struct Node *head) { return 0;

// Code together! }
}

26-01-28 7

Solution:
// Function to insert a new node at the end of the
linked list
void append(struct Node **head, int data) {
struct Node *newNode = createNode(data);
if (*head == NULL) {
*head = newNode;
} else {
struct Node *current = *head;
while (current->next !'= NULL) {
current = current->next;
}

current->next = newNode;

}

// Function to traverse and print the linked list
void traverse(struct Node *head) {
struct Node *current = head;
while (current != NULL) {
printf(“sd -> ", current->data);
current = current->next;

}

L -y A I YT H T B N | e



Memory Layout

Addresses

Kernel Address Space OxFFFF FFFF FFFF FFFF = (2" - 1)
Read only (mapped into process's

virtual memory)

Stack Local variables,

(grows {) stack frame
Libraries: ﬁ Memory Mapping
libc, libpthread.. (grows {)
Unallocated
space
H - Our Focus Today!
eap

malloc() to dynamically
(grows 1) allocate variables.

“Block Starting BSS
Symbol” (uninitialized) Global & static
Data data
(initialized)
I\':> e
0x0000 0000 0000 0000
26-01-28 8




brk() and sbrk()



Getting More Memory

* Program Break

~ Used by Linux to mark end of heap
(actually end of BSS; but grows to be

heap)

~ Above the program break is unallocated

space

~ Consider - what does “unallocated” mean?

* More Space

26-01-28

~ OS moves the program break higher to

expand the heap

~ Linux uses brk() and sbrk() to move
the program break

Kernel Address Space
(mapped into process's
virtual memory)

Stack
(grows {)

Memory Mapping
(grows {)

Heap
(grows T)

BSS
(uninitialized)

Data
(initialized)

Text




man sbrk

* man sbrk
- OSincreases size of heap

- It's a syscall: overhead!
* Don't call sbrk() often
- malloc() (user-level) calls

sbrk() (kernel) to get big
block of memory

- malloc() hands out small
pieces of memory for each
request

* How can malloc() do that?
- Allocation strategies

- Deallocation strategies



Audience Participation - Memory Layout

* Identify the labeled part

of the diagram (gro;su

Memory Mapping

(grows 1)
a) BSS
b) Heap
c) Program Break m u
d) Stack “ (grows 1)
(unini‘t‘i‘alized)
Data
(initialized)
Text

26-01-28 12



Managing Dynamic Memory
Overview

26-01-28 13



Sequential Fit Allocation

* There are many ways to write an allocator
- Real allocators optimize for common cases, and include debug features

- Our discussion is naive: we describe one allocation strategy in depth, and you
will use it in an assignment

- Still relevant because C-style allocators usually still operate in a broadly similar
way, but details will vary, and in the real world verify assumptions

* Why? “More robust” algorithms can perform worse (cache-unfriendliness,
lock requirements, maintenance effort)

* Alternative strategies not discussed (it's a huge topic!)
- Segregated fit (buddy, small-object...)

- Custom allocators (pools, arenas...)
- Handle-based systems and defragmenting

- Automatic garbage collection

26-01-28 14



Memory Allocator

Heap
* Memory Allocator: manages the heap
- For each allocation request, it returns a pointer Used
to an unused (or free) region inside the heap Freed
- It tracks of which parts of the heap are not used
* Fragmentation Used
- Over time the application allocates and frees
memory regions Freed
- This fragments memory into broken up pockets
Freed
of used and freed memory (why?)
- Handle-based strategies (which we won't go into) Used
Freed

26-01-28



Track Free Space

Heap
* Track free regions (blocks) in a linked list -
of free blocks i
- We don't track used regions; we are > Freed
given back regions from calls to

free() Used
C; Freed
—~ Freed
C Used
Freed

26-01-28 16



Linked List Management

Free 1t Block

Allocate Memory External Fragmentation

Pick first block that is Another Freed block goes Repeated allocate/free
big enough; split it. allocate at head of list can fragment free space.
Free Free Free
| - - -
Used Used Freed
|- B
Free D
| — | p— | p—
Freed Freed =
-
Used Used Freed
Used Used
-
 m
Head Head Head Head Head Head

26-01-28 17



Linked List Management

* Free Blocks Linked List
- We have a linked list of free blocks

- Head points to the most recent free block

* Basics of Allocation - malloc()
- Pick a free block from the linked list

- Remove it from the linked list
- Split the free block into two blocks: allocated and free
- Insert the new free block back into the head of the linked list

- Return the allocated block to the caller

* Basics of Deallocation - free()
- Insert the given (freed) block at head of the linked list

26-01-28 18



Linked List Without Dynamic Allocation

* Linked List of Free Memory
~ We've see how to manage free memory using a linked list of
free blocks

~ But, how do we normally create nodes in a Linked List?
Dynamic allocation!

~ So, how do we create a linked list without dynamic
allocation?

* In-Place Linked List ( = Internal Nodes)
~ Create a header on each free block to track size of the block
and pointer to next free block

~ Perform coalescing: combine consecutive free blocks into a
larger single free block

26-01-28



In-Place Linked List

Address
(0-255)

* Toy example with a heap size of
256 bytes

* Build linked-list of blocks

* Each free and allocated block
has a header Free
- Assume size and next are 8

bytes each (64-bit) r——
16 bytes Address of
next node
next = null .
N Size

26-01-28 20




Example - In-Place Linked List

Initial State

Free

next = null
— size = 256

26-01-28

256

——>| size = 140

Allocate
100 bytes

Free

next = nul

Allocated
(100 bytes)

next = nul
size=116

256

—)| size=74

Allocate
50 bytes

Free

next = nul

Allocated
(50 bytes)

next = nul
size = 66

Allocated
(100 bytes)

next = nul
size=116

256

182

Free
100 bytes

Free

next = nul
size =74

Allocated
(50 bytes)

next = nul
size = 66

Free

next = 182
—)>| size=116

Free
50 bytes

256

182

Free

next = nul
size =74

Free

next=0
size = 66

Free

next = 182
size=116

256

182

116

21



Audience Participation - Linked List

256

* What was the order in which these A
: + next =0
blocks were freed? (in order of first — siiet= 74 | 12
freed to last freed)

B

next = nul
size=66 | 116

a) Athen B then C
b) Athen C then B
c) B then C then A c
d) C then B then A

next =116
size=116

26-01-28 22

Answer: C
Listis in order A-->C-->B
So it's the reverse order: BCA



External Fragmentation

* External Fragmentation
~ Free memory is fragmented into smaller blocks
~ But each allocation request can only be satisfied by a
single block (cannot split it up)
~ Even if total free memory is enough, may not have
one contiguous free block to satisfy an allocation
request

* Internal Fragmentation
~ Problem of unused space inside blocks (more on this

when we talk about virtual memory)

26-01-28 23



Coalescing
* Coalescing

After
Coalescing

- Process of combining Free
consecutive free blocks ST
into bigger blocks dzo=
- Some external Free
fragmentation is next =0 e
unavoidable ==\ size =66

- Fix what we can fix easily

Free
next = 182 next = nul
size=116 —)>| Size = 255

26-01-28 24



Finding a Free Block

26-01-28 25



Allocation Policy

* Allocating Memory iaverse
(ma”OC ()) free block
- Requires finding a big {}
enough memory block to Find
satisfy the request Blg Snough

Allocated Block
Requested size
(returned to caller)

Extra space
(new free block)

Split block into
2 blocks

Link new free
space block as
head

26-01-28 26



Allocation Policy: First Fit

26-01-28

First Fit

Find the first block that is big enough

Advantage

Implementation simplicity

Fast: greedy algorithm, don't consider a lot
of alternatives

Disadvantage

Can pollute the beginning of the free list
with (too-)small blocks

Unpredictable, varies with list order

* For us, list order determined by free
order: FIFO

* Other policies are possible (next
fit/circular, LIFO, address order...)

Traverse
list

U

Find
First Block

Allocated
Block

Split
block

Extra
space

New
head

27



Allocation Policy: Best Fit

* BestFit
~ Find the smallest free block that is
big enough Tral‘i’;rse
* Advantage
~ Preserves large blocks for large QF
allocations Find
~ Reuses exactly-same-size Best Block
allocations well (why might this be a
big advantage?)
~ Predictable Allocated Split Extra
* Disadvantage Block block space
- Slow: must search the entire list {}
(or: use a more complex ordered
data structure) New
head

26-01-28 28



Allocation Policy: Worst Fit

* Worst Fit
~ Find the largest free block

Traverse

* Advantage et

~ Avoids creating unusably 3 ;

small leftovers Find
* ...this time ‘é".‘éf.i
* Disadvantage
~ Also slow: must search the Allocated Soit Ext
entire list, like best fit ,:,f,acke blgc:k s:az
~ Trends toward uniformly- {}
spaced blocks (why is this not
great?) New

26-01-28 29



Audience Participation - Free Space

256

* A memory allocation system is asked to A
. . xt =0

allocate 50 bytes. Which block is = sire =7 | 159
allocated if it is using... .

- First fit

a) A next = nul
- Worst Fit b) B size=66 | 116
- Best Fit ¢)C

d) None of them.

next=116
size =116

26-01-28 30

First: A (actual free is 58 bytes)
Worst: C (actual free is 100 bytes)
Best: B (actual free is 50 bytes)



* Memory Segments
- text, data, BSS, heap, memory mapped, stack, kernel

- Program break and effect of brk() and sbrk()

* Memory Allocator
- Linked list of free memory

- New free blocks go first in the list

* Fragmentation
- External fragmentation

- Coalescing algorithm

* Allocation Policy
- First/best (smallest)/worst (largest) fit

26-01-28 31



	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31

