Memory Management

Adapted by Joseph Lunderville
from slides by Dr. Brian Fraser
and course material by Dr. Steve Ko
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1)What is the layout of memory?

2)How does the heap work?
a)Getting space from the OS

b)Tracking free space
c) Freeing allocated space
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* Memory allocation/deallocation
- Heap is used for dynamically allocated memory

* Usually use: malloc() or calloc(), and free()
- How could we actually implement malloc()/free()?

(This will help us really understand low-level memory
management)

* We are not talking about physical memory here:

User processes can only use virtual memory, not
physical memory
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* Can find more info in OSTEP book (more depth than we
require, really)
= Chapter 13, The Abstraction: Address Spaces
https://pages.cs.wisc.edu/~remzi/OSTEP/vm-intro.pdf

- Chapter 14, Interlude: Memory API
https://pages.cs.wisc.edu/~remzi/OSTEP/vm-api.pdf

- Chapter 15, Free Space Management

https://pages.cs.wisc.edu/~remzi/OSTEP/vm-freespac
e.pdf
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https://pages.cs.wisc.edu/~remzi/OSTEP/vm-intro.pdf
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Prerequisites
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What You (Should) Already Know

* This lecture assumes you know:
- Data structures used for memory management -
array, struct (record type), linked lists

- Howtousemalloc() and free() in C
- How to implement a singly- and doubly-linked list
- The stack and the heap

* How variables are placed in stack and heap

* Scope and lifetime of variables in stack and heap
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Activity - Linked Lists

struct Node { int main() {

int data; struct Node *head = NULL;
struct Node *next;
}; // Append elements to the list
append(&head, 1);
// Create a new node with the given data append(&head, 2);
struct Node *createNode(int data) { append(&head, 3);
struct Node *newNode
= malloc(sizeof (*newNode)); // Traverse and print the list
newNode->data = data; printf("Linked List: ");
newNode->next = NULL; traverse(head);
return newNode;
} // Remember: free memory when done

struct Node *current = head;
while (current != NULL) {

// Insert a new node at the end of list struct Node *temp = current;
void append(struct Node **head, int data) { current = current->next;

// Code together! free(temp);
} }

head = NULL;

// Traverse and print the linked list
void traverse(struct Node *head) { return 0;

// Code together! }
}
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Solution:
// Function to insert a new node at the end of the
linked list
void append(struct Node **head, int data) {
struct Node *newNode = createNode(data);
if (*head == NULL) {
*head = newNode;
} else {
struct Node *current = *head;
while (current->next !'= NULL) {
current = current->next;
}

current->next = newNode;

}

// Function to traverse and print the linked list
void traverse(struct Node *head) {
struct Node *current = head;
while (current != NULL) {
printf(“sd -> ", current->data);
current = current->next;

}
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Memory Layout

Addresses

Kernel Address Space OxFFFF FFFF FFFF FFFF = (2" - 1)
Read only (mapped into process's

virtual memory)

Stack Local variables,

(grows {) stack frame
Libraries: ﬁ Memory Mapping
libc, libpthread.. (grows {)
Unallocated
space
H - Our Focus Today!
eap

malloc() to dynamically
(grows 1) allocate variables.

“Block Starting BSS
Symbol” (uninitialized) Global & static
Data data
(initialized)
I\':> e
0x0000 0000 0000 0000
26-01-28 8




brk() and sbrk()



Getting More Memory

* Program Break

~ Used by Linux to mark end of heap
(actually end of BSS; but grows to be

heap)

~ Above the program break is unallocated

space

~ Consider - what does “unallocated” mean?

* More Space
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~ OS moves the program break higher to

expand the heap

~ Linux uses brk() and sbrk() to move
the program break

Kernel Address Space
(mapped into process's
virtual memory)

Stack
(grows {)

Memory Mapping
(grows {)

Heap
(grows T)

BSS
(uninitialized)

Data
(initialized)

Text




man sbrk

* man sbrk
- OSincreases size of heap

- It's a syscall: overhead!
* Don't call sbrk() often
- malloc() (user-level) calls

sbrk() (kernel) to get big
block of memory

- malloc() hands out small
pieces of memory for each
request

* How can malloc() do that?
- Allocation strategies

- Deallocation strategies



Audience Participation - Memory Layout

* Identify the labeled part

of the diagram (gro;su

Memory Mapping

(grows 1)
a) BSS
b) Heap
c) Program Break m u
d) Stack “ (grows 1)
(unini‘t‘i‘alized)
Data
(initialized)
Text
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Managing Dynamic Memory
Overview
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Sequential Fit Allocation

* There are many ways to write an allocator
- Real allocators optimize for common cases, and include debug features

- Our discussion is naive: we describe one allocation strategy in depth, and you
will use it in an assignment

- Still relevant because C-style allocators usually still operate in a broadly similar
way, but details will vary, and in the real world verify assumptions

* Why? “More robust” algorithms can perform worse (cache-unfriendliness,
lock requirements, maintenance effort)

* Alternative strategies not discussed (it's a huge topic!)
- Segregated fit (buddy, small-object...)

- Custom allocators (pools, arenas...)
- Handle-based systems and defragmenting

- Automatic garbage collection
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Memory Allocator

Heap
* Memory Allocator: manages the heap
- For each allocation request, it returns a pointer Used
to an unused (or free) region inside the heap Freed
- It tracks of which parts of the heap are not used
* Fragmentation Used
- Over time the application allocates and frees
memory regions Freed
- This fragments memory into broken up pockets
Freed
of used and freed memory (why?)
- Handle-based strategies (which we won't go into) Used
Freed
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Track Free Space

Heap
* Track free regions (blocks) in a linked list -
of free blocks i
- We don't track used regions; we are > Freed
given back regions from calls to

free() Used
C; Freed
—~ Freed
C Used
Freed
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Linked List Management

Free 1t Block

Allocate Memory External Fragmentation

Pick first block that is Another Freed block goes Repeated allocate/free
big enough; split it. allocate at head of list can fragment free space.
Free Free Free
| - - -
Used Used Freed
|- B
Free D
| — | p— | p—
Freed Freed =
-
Used Used Freed
Used Used
-
 m
Head Head Head Head Head Head
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Linked List Management

* Free Blocks Linked List
- We have a linked list of free blocks

- Head points to the most recent free block

* Basics of Allocation - malloc()
- Pick a free block from the linked list

- Remove it from the linked list
- Split the free block into two blocks: allocated and free
- Insert the new free block back into the head of the linked list

- Return the allocated block to the caller

* Basics of Deallocation - free()
- Insert the given (freed) block at head of the linked list
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Linked List Without Dynamic Allocation

* Linked List of Free Memory
~ We've see how to manage free memory using a linked list of
free blocks

~ But, how do we normally create nodes in a Linked List?
Dynamic allocation!

~ So, how do we create a linked list without dynamic
allocation?

* In-Place Linked List ( = Internal Nodes)
~ Create a header on each free block to track size of the block
and pointer to next free block

~ Perform coalescing: combine consecutive free blocks into a
larger single free block
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In-Place Linked List

Address
(0-255)

* Toy example with a heap size of
256 bytes

* Build linked-list of blocks

* Each free and allocated block
has a header Free
- Assume size and next are 8

bytes each (64-bit) r——
16 bytes Address of
next node
next = null .
N Size
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Example - In-Place Linked List

Initial State

Free

next = null
— size = 256
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256

——>| size = 140

Allocate
100 bytes

Free

next = nul

Allocated
(100 bytes)

next = nul
size=116

256

—)| size=74

Allocate
50 bytes

Free

next = nul

Allocated
(50 bytes)

next = nul
size = 66

Allocated
(100 bytes)

next = nul
size=116

256

182

Free
100 bytes

Free

next = nul
size =74

Allocated
(50 bytes)

next = nul
size = 66

Free

next = 182
—)>| size=116

Free
50 bytes

256

182

Free

next = nul
size =74

Free

next=0
size = 66

Free

next = 182
size=116

256

182

116
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Audience Participation - Linked List

256

* What was the order in which these A
: + next =0
blocks were freed? (in order of first — siiet= 74 | 12
freed to last freed)

B

next = nul
size=66 | 116

a) Athen B then C
b) Athen C then B
c) B then C then A c
d) C then B then A

next =116
size=116
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Answer: C
Listis in order A-->C-->B
So it's the reverse order: BCA



External Fragmentation

* External Fragmentation
~ Free memory is fragmented into smaller blocks
~ But each allocation request can only be satisfied by a
single block (cannot split it up)
~ Even if total free memory is enough, may not have
one contiguous free block to satisfy an allocation
request

* Internal Fragmentation
~ Problem of unused space inside blocks (more on this

when we talk about virtual memory)
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Coalescing
* Coalescing

After
Coalescing

- Process of combining Free
consecutive free blocks ST
into bigger blocks dzo=
- Some external Free
fragmentation is next =0 e
unavoidable ==\ size =66

- Fix what we can fix easily

Free
next = 182 next = nul
size=116 —)>| Size = 255
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Finding a Free Block
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Allocation Policy

* Allocating Memory iaverse
(ma”OC ()) free block
- Requires finding a big {}
enough memory block to Find
satisfy the request Blg Snough

Allocated Block
Requested size
(returned to caller)

Extra space
(new free block)

Split block into
2 blocks

Link new free
space block as
head
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Allocation Policy: First Fit
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First Fit

Find the first block that is big enough

Advantage

Implementation simplicity

Fast: greedy algorithm, don't consider a lot
of alternatives

Disadvantage

Can pollute the beginning of the free list
with (too-)small blocks

Unpredictable, varies with list order

* For us, list order determined by free
order: FIFO

* Other policies are possible (next
fit/circular, LIFO, address order...)

Traverse
list

U

Find
First Block

Allocated
Block

Split
block

Extra
space

New
head
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Allocation Policy: Best Fit

* BestFit
~ Find the smallest free block that is
big enough Tral‘i’;rse
* Advantage
~ Preserves large blocks for large QF
allocations Find
~ Reuses exactly-same-size Best Block
allocations well (why might this be a
big advantage?)
~ Predictable Allocated Split Extra
* Disadvantage Block block space
- Slow: must search the entire list {}
(or: use a more complex ordered
data structure) New
head
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Allocation Policy: Worst Fit

* Worst Fit
~ Find the largest free block

Traverse

* Advantage et

~ Avoids creating unusably 3 ;

small leftovers Find
* ...this time ‘é".‘éf.i
* Disadvantage
~ Also slow: must search the Allocated Soit Ext
entire list, like best fit ,:,f,acke blgc:k s:az
~ Trends toward uniformly- {}
spaced blocks (why is this not
great?) New
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Audience Participation - Free Space

256

* A memory allocation system is asked to A
. . xt =0

allocate 50 bytes. Which block is = sire =7 | 159
allocated if it is using... .

- First fit

a) A next = nul
- Worst Fit b) B size=66 | 116
- Best Fit ¢)C

d) None of them.

next=116
size =116
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First: A (actual free is 58 bytes)
Worst: C (actual free is 100 bytes)
Best: B (actual free is 50 bytes)



* Memory Segments
- text, data, BSS, heap, memory mapped, stack, kernel

- Program break and effect of brk() and sbrk()

* Memory Allocator
- Linked list of free memory

- New free blocks go first in the list

* Fragmentation
- External fragmentation

- Coalescing algorithm

* Allocation Policy
- First/best (smallest)/worst (largest) fit
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