
26-01-22 1

Scheduling

Adapted by Joseph Lunderville
from slides by Dr. Brian Fraser

and course material by Dr. Steve Ko

26-01-22 2

Topics
● Computers appear to do more things at the same time

than there are CPUs
– How do multiple processes run “at once”?
– How can multiple users log into a computer at once?

● Sharing execution means taking turns
– How do we decide who to prioritize right now?

26-01-22 3

The Story So Far...
● “In the beginning” CPUs had a single

core and one program running
● Then "back in the day" computers

had a single core but many users
– Each user might have a terminal and

want to run programs
– How do they share the same CPU?

● "These days..." CPUs have many
cores, but many more processes than
cores

● Many names for different kinds of
things that run

– Jobs, processes, tasks, threads

26-01-22 4

More Depth
● We will cover scheduling a little to understand the problem

– CMPT301 teaches it in depth
● Can read more in OSTEP (has in-depth discussions beyond

scope of this course)
https://pages.cs.wisc.edu/~remzi/OSTEP/

– Chapter 7 Scheduling: Introduction
https://pages.cs.wisc.edu/~remzi/OSTEP/cpu-sched.pdf

– Chapter 8 Scheduling: The Multi-Level Feedback Queue
https://pages.cs.wisc.edu/~remzi/OSTEP/cpu-sched-mlfq.pdf

– Chapter 9.7 The Linux Completely Fair Scheduler (CFS)
https://pages.cs.wisc.edu/~remzi/OSTEP/cpu-sched-lottery.p
df

https://pages.cs.wisc.edu/~remzi/OSTEP/
https://pages.cs.wisc.edu/~remzi/OSTEP/cpu-sched.pdf
https://pages.cs.wisc.edu/~remzi/OSTEP/cpu-sched-mlfq.pdf
https://pages.cs.wisc.edu/~remzi/OSTEP/cpu-sched-mlfq.pdf
https://pages.cs.wisc.edu/~remzi/OSTEP/cpu-sched-mlfq.pdf

5 26-01-22

CPU Scheduling

26-01-22 6

CPU Scheduling
● CPU Scheduling

– Sharing a core among multiple processes
– Or, sharing multiple cores among multiple processes

(beyond the scope of this course)
● Context switch

– Stop running one process, and start running another
process

– There is overhead (work) when the CPU does this switch, so
don't do it too frequently – can we guess why?

– Stopped process can later be resumed exactly where it left off,
once it has another turn on the CPU

26-01-22 7

Process Lifecycle

● Scheduling
Picking one process to run next (from ready queues)

● Scheduler
Component of the kernel that picks the next process to run

..

Disk Ready
Queue

Executing
(CPU)

I/O
Queue

ScheduledLoaded into
process

Program on
disk Preempted

Executes
I/O Operation

Done
I/O

Queue of processes
which are waiting for

some CPU time

26-01-22 8

Types of Scheduling Algorithm
● Non-preemptive scheduling

– A process gives up the core when it
● terminates
● waits for an OS operation that takes an indefinite amount of time

– e.g.: wait() for child, file or network I/O, thread synchronization
– AKA “blocking”

● yields voluntarily (sleep())
● Preemptive scheduling

– The kernel stops a process at any time
– The kernel itself (e.g., syscalls, scheduler) might not be preemptible

● Preemptible kernel
– (almost) all of the kernel can be preempted!
– Necessary (but not sufficient) for “real-time” operation

26-01-22 9

Scheduling Goals
● We want to maximize

– CPU utilization: keep the CPU as busy as possible
– Throughput: units of work, i.e. number of processes, completed

per unit time
● We want to minimize

– Turnaround time: time taken to execute a particular process
(from submission to termination)

– Wait time: time a process has been waiting in ready queue
– Response time: amount of time it takes from when a request is

submitted until the first response is produced
● These are not orthogonal! They overlap

10 26-01-22

Scheduling Algorithms

26-01-22 11

Simplifying Assumptions
● Each process needs the CPU for a certain amount of time

– We'll assume we know how much time it needs at the start, but could
be estimated

– Preemptive algorithms generally don’t use this information
● Often processes are long lived, but only need the CPU in short bursts

– We'll just look at one burst of activity from each process, during one
short time interval

– In reality this kind of scheduling would recur at irregular intervals

Ar
riv

al
 T

im
e P1

P2

P3

P4

26-01-22 12

First Come, First Served (FCFS)
● First Come, First Served:

– Run in the order of arrival
– Simplest functioning algorithm
– Non-preemptive (once running, a process keeps

running)
● Waiting time:

– Sum of how long each process is in the ready queue
– Used to assess how good a scheduling algorithm is

There are other metrics are based on scheduling goals
above, but for now waiting time is easy to calculate

26-01-22 13

First Come, First Served Example
Ar

riv
al

 T
im

e

P1 P2 P3 P4

Execution Time 7 4 1 4

Arrival Time 0 2 4 5

P1

P2

P3

P4

Execution Time

P1 P2 P3 P4

FCFS is non-
preemptive

Wait time:
= (0 + 5 + 7 + 7)
Average wait time:
= 19 / 4
= 4.75

26-01-22 14

Audience Participation - FCFS
● What is the total wait time for the following

processes using FCFS?

a) 40 + 20 + 8 = 68
b) 40 + 20 + 8 + 10 = 78
c) 40 + 60 + 68 = 168
d) 40 + 60 + 68 + 78 = 246

P1 P2 P3 P4

Execution Time 40 20 8 10

Arrival Time 0 0 0 0

26-01-22 15

Audience Participation – FCFS 2
● What is the total wait time for the following

processes using FCFS?

● What is the problem with FCFS?
– A long process can sabotage all other processes.

a) 10 + 30 + 38 = 78
b) 10 + 30 + 38 + 78 = 156
c) 10 + 20 + 8 = 38
d) 10 + 20 + 8 + 40 = 78

P1 P2 P3 P4

Execution Time 10 20 8 40

Arrival Time 0 0 0 0

26-01-22 16

Shortest Job First (SJF)
● Let's try something where a long process doesn't

sabotage all other processes
● Shortest Job First Scheduling Algorithm:

– Among the remaining processes, pick the process
with the shortest execution time

– Non-preemptive:
● Once running, a job runs to completion

Assume for the sake of discussion, we
know how long each process takes

26-01-22 17

Shortest Job First Example
Ar

riv
al

 T
im

e

P1 P2 P3 P4

Execution Time 7 4 1 4

Arrival Time 0 2 4 5

P1

P2

P3

P4

Execution Time

P1 P2P3 P4

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

ShortestSJF is non-
preemptive

Total Wait Time:
= (0 + 6 + 3 + 7) = 16

Average wait time:
= 16 / 4
= 4

26-01-22 18

Shortest Remaining Time First (SRTF)
● Shortest Remaining Time First Scheduling

Algorithm:
– Schedule the process with the shortest remaining

execution time
– This is preemptive: when a new job arrives, it can

interrupt a currently executing job

26-01-22 19

Shortest Remaining Time First Example
Ar

riv
al

 T
im

e

P1 P2 P3 P4

Execution Time 7 4 1 4

Arrival Time 0 2 4 5

P1

P2

P3

P4

P1 P2 P3 P4

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Execution Time

Always pick shortest
remaining time

SRTF is
preemptive

P1P2

Wait Times
P1 P2 P3 P4

= 12

Average Wait Time
= 12 / 4
= 3

0+9 0+1 0 2

26-01-22 20

Round Robin (RR)
● Round Robin Scheduling Algorithm:

– Forget about knowing how long things take
– Just give everyone equal length turns

● Preemptive
– Quantum: How long a turn each process gets on the CPU
– Each x units of time (quantum) the scheduler will:

● Move currently running process to the back (tail) of the ready
queue

● Take first process from the front (head) of the ready queue and
run it

– Newly arrived processes inserted at the back of the ready queue

26-01-22 21

Round Robin Example (Quantum = 3ms)
Ar

riv
al

 T
im

e

P1 P2 P3 P4

Execution Time 7 4 1 4

Arrival Time 0 2 4 5

P1

P2

P3

P4

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Execution Time

Change
every 3ms

Wait Times
P1 P2 P3 P4

= 28

Average Wait Time
= 28 / 4
= 7

0+3+5 1+7 5 5+2

P1 P2 P3 P4P1 P2 P1 P4

26-01-22 22

Audience Participation - Round Robin
● If the quantum is very long,

then round robin is effectively the same as:

● If the quantum is very short, what can go wrong?

a) First come first serve

b) Shortest Job First

c) Shortest remaining time first

a) Processes do not make progress because they keep being reset when
preempted

b) Processes do not make progress because they keep being killed when
preempted

c) Context switch overhead is too high

d) The ready queue is likely to be empty

26-01-22 23

Priority Scheduling
● Priority Scheduling

– Run the process in ready queue with the highest priority.
– This can be either preemptive or non-preemptive.

● Motivation: real-time tasks with deadlines
– Some systems require hard or soft deadlines for their

computational tasks.
– e.g, an airplane controller must respond to an outside event

(e.g., an incoming bird) within a fixed (usually short) time
period.

When a new process is added to the ready
queue, do we allow a context switch?

26-01-22 24

Real-Time Deadlines
● Hard real-time systems:

– Strict deadlines which cause system failure if missed
– Failure may have real-world consequences (destruction, injury)

● Control systems: car ECU, braking, power supplies

● Firm real-time systems:
– Strict deadlines but system can tolerate some amount of misses

● Media, telephony: dropped frames are okay, but not too many

● Soft real-time systems:
– Approximate deadlines where late completion reduces value

● Most interactive systems: lag sucks
● At a longer timescale, reporting/prediction e.g. weather forecast

● Real-time tasks usually have higher priorities (should run first)
– Beware priority inversion

26-01-22 25

Priority Scheduling (cont’d)
● Task priority is typically expressed as a number

(where a smaller number has a higher priority).
● Problem: Starvation

– Lower priority processes may never run (how?)
– E.g, if high priority processes keep arriving...

26-01-22 26

Multilevel Queue Scheduling
● Multilevel Queue Scheduling

– Group processes based on categories
– Each category gets its own ready queue and a priority

value

System Process QueueSystem Process Queue

Foreground Process QueueForeground Process Queue

Background Process QueueBackground Process Queue

Priority 0

Priority 1

Priority 2

26-01-22 27

Multilevel Queue Scheduling
● Each queue gets CPU time based on priority

– (One idea) Weighted Round Robin: give more turns to higher-priority queues
– E.g., schedule turns for each priority:

0, 1, 2, 0, 1, 0, 0, 1, 2, 0, 1, 0, 0, 1, 2, 0, 1, 0, ...

● During each queue’s turn
– Scheduling algorithm (chosen per queue) picks which process in that queue to run

● Avoids queue starvation
– Each queue gets a chance to run

System Process QueueSystem Process Queue

Foreground Process QueueForeground Process Queue

Background Process QueueBackground Process Queue

Priority 0
RR
Priority 1
FCFS
Priority 2
SJF

Priority 0
gets more
turns than

1 or 2.

26-01-22 28

Multilevel Feedback Queue Scheduling
● Multilevel Feedback Queue

– Use multiple queues.
– Move a process to lower priority if it takes too much CPU time.
– Like Multilevel Queue, but processes lose priority via aging:

Lower priority by moving to lower queue if process runs too long.

Q0: RR (quantum = 8)Q0: RR (quantum = 8)

Q1: RR (quantum = 16)Q1: RR (quantum = 16)

Q2: FCFSQ2: FCFS

Job A enters, gets 8ms

Job A is preempted; moved to Q1;
All other jobs in Q0 run.

When Q0 is empty,
Job A gets 16ms

Job A is preempted; moved to Q2;
All other jobs in Q0 and Q1 run.

If Q0 and Q1 are empty,
Job A runs until done (FCFS)

26-01-22 29

Linux is Nice
● Linux categorizes processes into two classes

– Real-time processes (priority values 0 to 99)
– Normal processes (priority values 100 to 139)

● Nice value assigns a priority for a normal process
– Nice values range from -20 to +19

(lower nice == higher priority – greedier)
– The default nice value is 0
– Nice -20 = priority 100, etc.

Real-time processes Normal Processes
Priority
0

10099 139

Nice
-20

Nice
+19

Nice
0

26-01-22 30

Linux Completely Fair Scheduler (CFS)
● Longer running processes get a lower priority

– The longer it ran, the less chance it gets to run
– Older processes lose priority (aging)

● CFS tries to ensure each process uses a similar amount of CPU
time

– CFS uses virtual run time instead of physical (actual) run time
– Virtual run time = physical run time + decay formula

● Higher decay with lower priority
● I.e., “decay formula” is bigger for a lower priority

– Stored internally in a balanced tree based on virtual run time

26-01-22 31

Process Types
● Interactive vs. batch

– Interactive
● Mainly user driven; regular desktop applications

– Batch
● Program runs from start to end; no interaction needed

E.g., compiling a program, data analytics...

● I/O bound vs. CPU bound
– I/O bound

● More I/O than computation
E.g., format change, such as CSV to XML

– CPU bound
● More computation than I/O

E.g., compression, cryptography, etc.

26-01-22 32

Summary
● Scheduler picks what job to run next.
● Algorithms

– First Come, First Served
– Shortest Job First
– Shortest Remaining Time First
– Round Robin
– Multilevel Queue
– Multilevel Feedback Queue
– Completely Fair Schedule

● Drawing process scheduling diagrams
– Compute wait time, average wait time

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32

