Signals

Adapted by Joseph Lunderville
from slides by Dr. Brian Fraser
and course material by Dr. Steve Ko

26-01-22 1

* We can create processes, but how can they

communicate?
- How can regular code with loops and functions
handle asynchronous communication?

- How can a child send a message to the parent?

26-01-22 2

Introduction to Signals

26-01-22 3

* Signals are notifications with specific meanings
- Programs and the kernel can send signals to
themselves or other programs

* Wonka Golden Ticket Example
- Parent process spawns children to search for a

golden ticket
- Parent registers a signal handle

- Child sends a signal to parent when it discovers a
ticket

26-01-22 4

Pseudocode for Signals

* Parent e Child
handler() {
print "Found ticket!"
} main() {
main() { if(pid != 0} {
pid = fork ()
if (pid != @) { } else {
1 p1 = . .
register signal handler if (ff)un?—t'Ckett()){
wait forever } signal paren
}
} }
sigaction(...) } Kill(...)

26-01-22

Function Pointers

 Variables
- Normal variables hold values

- Pointers hold the address of a variable
- Function pointers hold the address of a function

- They allow us to pass around (and call) functions

handler() {
print "Found ticket!"

my_function }

26-01-22 6

Why Function Pointers?

* Imagine an embedded system receiving bluetooth data
~ How does the bluetooth module / library tell the rest of the
system there is data available?

* Idea 1
~ Application just keep asking it!

~ Slow, power hungry!

* Idea 2
~ Have bluetooth module directly execute our application’s
code!

~ How? Have the module to call our function.
~ How? Give it a function pointer

26-01-22 7

-
Coding with Function Pointers

<stdio.h>
happy
printf("%d is great!
sad
printf("%d sucks!\n"
main

my_function

my_function(i)

26-01-22

Looks complex, but
it's just the prototype with:
a) variable name in brackets

—_b) “*" before the name

Can also use: ‘
my_function = &happy;

Call the function pointer like it’s ‘
just a normal function

Audience Participation - Function Pointers

* Which of the following gets the address of a function?

a) &foo()
b) *foo()
c) &foo
d) foo

* Which of the following correctly creates a function pointer named func that
points to int foo(char a, int b)?

a) int (*foo)(char a, int b) = func;
b) int (*func)(char a, int b) = foo;
c) int *(foo)(char a, int b) = func;
d) int *(func)(char a, int b) = foo;

26-01-22 9

Coding with Signals

26-01-22

Coding with Signals

* To receive a signal we must
- write a function to handle a certain signal

- register a handler with Linux using sigaction() by
passing it a function pointer to our handler

int sigaction(int signum, struct sigaction *act, struct sigaction *oldact);

/Struct configuring W

Signal to . . Gives us
handle struct sigaction back the
such as .sa_handler = Our handler old signal
g SIGSEGV .sa_Tflags = Custom flags (0) g handler. -
.sa_mask = Set with sigemptyset()

N -

26-01-22

Run man 7 signal
~ Some examples (scroll down to “Standard signals”)

* SIGINT: interrupt, CTRL-C
* SIGKILL: kill call
* SIGSEGV: invalid memory reference
~ How to send a signal (scroll up to Sending a signal’)
* raise():to self
* kill():to another process

~ Signal handler
* man sigaction

* The important part is filling out struct sigaction
* Look at feature test macros for sigaction
~ When handling signals, you need to use signal safe functions
* man signal-safety for a list of async-signal-safe functions

26-01-22

Activity - sigaction()

26-01-22

Write a program that handles SIGINT (10m)
- Use sigaction() toinstall a SIGINT signal handler

- Handler should print "CTRL-C pressed"
- Wait (call sleep())

Test using CTRL-C
- Use btop (or ps, kill) to send SIGINT and kill

Hints
- Use write(STDOUT_FILENGO,) instead of printf() (not signal safe)

- Ssigaction()'s struct
* Declare/allocate a struct, then initialize the fields one by one
* Setthe .sa_handler to your function
* Setthe .sa_flags to 0 (don't need any here)

* Initialize .sa_mask to empty; man sigemptyset

L
Solution Code

<stdbool.h>

Setdlib >
* Note function Sanistd e
pOlnte 'S o meses "CTRL-C Pressed
write strlen()
* Note struct
initialization
- Pass by ptr
sigemptyset
sigaction

perror("Sigaction() failed")
exit()

sleep(1)

26-01-22

Activity - kill()

* Write a program that creates two processes (5m)
~ Parent process

* Use sigaction() install SIGINT signal handler
* Handler should print "CTRL-C pressed"
* Wait (call sleep())

~ Child process
* Periodically send SIGINT to the parentin a loop
* Wait between signals (call sleep())

* Hint
~ Use kill()
~ Remember fork()?

26-01-22

Solution Code

sleep
printf "HEY Parent!'\n"

kill(getppid
perror "Unable to send signal to parent."
exit

26-01-22

Audience Participation - Signals

* What is wrong with this signal handler for SIGINT?

, . , , a) It has the wrong name
void do_signal(int signum) {

printf(”"Signal %d\n”, signum); b)Ithasthe wrongarguments
}) It has the wrong return type

d) It calls the wrong function

* What is the data type of the second argument to
sigaction()?

a) Function pointer to signal handler
b) Pointer to a struct which contains a function pointer
c) The signal number to respond to

d) Pointer to the mask of signals to block while in the signal handler

26-01-22

 Signals are notifications with specific meanings
- Allow asynchronous communication

* Configure to receive using sigaction()
- Configuration done with a struct

- Set signal handler with a function pointer

* Send any signal with k1l1()

26-01-22

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18

