
26-01-22 1

Signals

Adapted by Joseph Lunderville
from slides by Dr. Brian Fraser

and course material by Dr. Steve Ko

26-01-22 2

Topics
● We can create processes, but how can they

communicate?
– How can regular code with loops and functions

handle asynchronous communication?
– How can a child send a message to the parent?

3 26-01-22

Introduction to Signals

26-01-22 4

Signals
● Signals are notifications with specific meanings

– Programs and the kernel can send signals to
themselves or other programs

● Wonka Golden Ticket Example
– Parent process spawns children to search for a

golden ticket
– Parent registers a signal handle
– Child sends a signal to parent when it discovers a

ticket

26-01-22 5

Pseudocode for Signals
● Parent

...
main() {
 ...
 if(pid != 0} {
 ...
 } else {
 if (found_ticket()) {
 signal parent
 }
 }
}

handler() {
 print "Found ticket!"
}

main() {
 pid = fork()

 if (pid != 0) {
 register signal handler
 wait forever
 }
}

sigaction(...) kill(...)

● Child

26-01-22 6

Function Pointers
● Variables

– Normal variables hold values
– Pointers hold the address of a variable
– Function pointers hold the address of a function
– They allow us to pass around (and call) functions

handler() {
 print "Found ticket!"
}my_function

26-01-22 7

Why Function Pointers?
● Imagine an embedded system receiving bluetooth data

– How does the bluetooth module / library tell the rest of the
system there is data available?

● Idea 1
– Application just keep asking it!
– Slow, power hungry!

● Idea 2
– Have bluetooth module directly execute our application’s

code!
– How? Have the module to call our function.
– How? Give it a function pointer

26-01-22 8

Coding with Function Pointers

Looks complex, but
it’s just the prototype with:

a) variable name in brackets
b) “*” before the name

Can also use:
my_function = &happy;

Call the function pointer like it’s
just a normal function

26-01-22 9

Audience Participation - Function Pointers
● Which of the following gets the address of a function?

● Which of the following correctly creates a function pointer named func that
points to int foo(char a, int b)?

a) &foo()

b) *foo()

c) &foo

d) foo

a) int (*foo)(char a, int b) = func;

b) int (*func)(char a, int b) = foo;

c) int *(foo)(char a, int b) = func;

d) int *(func)(char a, int b) = foo;

26-01-22 10

Coding with Signals

26-01-22 11

Coding with Signals
● To receive a signal we must

– write a function to handle a certain signal
– register a handler with Linux using sigaction() by

passing it a function pointer to our handler

Signal to
handle,
such as
SIGSEGV

Gives us
back the
old signal
handler.

Struct configuring our handler
struct sigaction

.sa_handler = Our handler

.sa_flags = Custom flags (0)

.sa_mask = Set with sigemptyset()

int sigaction(int signum, struct sigaction *act, struct sigaction *oldact);

26-01-22 12

man 7 signal

● Run man 7 signal
– Some examples (scroll down to “Standard signals”)

● SIGINT: interrupt, CTRL-C
● SIGKILL: kill call
● SIGSEGV: invalid memory reference

– How to send a signal (scroll up to `Sending a signal`)
● raise(): to self
● kill(): to another process

– Signal handler
● man sigaction
● The important part is filling out struct sigaction
● Look at feature test macros for sigaction

– When handling signals, you need to use signal safe functions
● man signal-safety for a list of async-signal-safe functions

26-01-22 13

Activity - sigaction()
● Write a program that handles SIGINT (10m)

– Use sigaction() to install a SIGINT signal handler
– Handler should print "CTRL-C pressed"
– Wait (call sleep())

● Test using CTRL-C
– Use btop (or ps, kill) to send SIGINT and kill

● Hints
– Use write(STDOUT_FILENO,) instead of printf() (not signal safe)
– sigaction()'s struct

● Declare/allocate a struct, then initialize the fields one by one
● Set the .sa_handler to your function
● Set the .sa_flags to 0 (don't need any here)
● Initialize .sa_mask to empty; man sigemptyset

26-01-22 14

Solution Code
● Note function

pointers
● Note struct

initialization
– Pass by ptr

26-01-22 15

Activity - kill()
● Write a program that creates two processes (5m)

– Parent process
● Use sigaction() install SIGINT signal handler
● Handler should print "CTRL-C pressed"
● Wait (call sleep())

– Child process
● Periodically send SIGINT to the parent in a loop
● Wait between signals (call sleep())

● Hint
– Use kill()
– Remember fork()?

26-01-22 16

Solution Code

26-01-22 17

Audience Participation - Signals
● What is wrong with this signal handler for SIGINT?

● What is the data type of the second argument to
sigaction()?
a) Function pointer to signal handler
b) Pointer to a struct which contains a function pointer
c) The signal number to respond to
d) Pointer to the mask of signals to block while in the signal handler

void do_signal(int signum) {
printf("Signal %d\n", signum);

}

a) It has the wrong name
b) It has the wrong arguments
c) It has the wrong return type
d) It calls the wrong function

26-01-22 18

Summary
● Signals are notifications with specific meanings

– Allow asynchronous communication
● Configure to receive using sigaction()

– Configuration done with a struct
– Set signal handler with a function pointer

● Send any signal with kill()

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18

