Processes:
walitpid(), errno

Adapted by Joseph Lunderville
from slides by Dr. Brian Fraser
and course material by Dr. Steve Ko

26-01-19 1



* How can a parent process wait for a child?

* How can we know what errors have happened?

26-01-19 2



Waiting for a child:
walt ()

26-01-19 3



s wait()
- waits on a child process's termination and obtains its
status.

- Family of calls; we'll usually use waitpid(),
but refer to them as just wait()

* Common usage

pid_t pid = fork();
if (pid != 0) {
// Parent waits for child process to finish
if (waitpid(pid, ...) == -1) {
// Exit on error
ks

} else {
// Child does something.. exec?
3

26-01-19 4



(2) System Calls Manual

NAME
walit, waitpid, waitid - wait for process to change state

LIBRARY
Standard C library (

A lot to understand in just
a single syscall!
What are these options?

SYNOPSIS
#tinclude <sys/wait.h>

pid_t wait(int *_Nullable );
pid_t waitpid(pid_t , 1nt *_Nullable , 1int );

DESCRIPTION

All of these system calls are used to wait for state changes in a
child of the calling process, and obtain information about the
child whose state has changed. A state change 1s considered to
be: the child terminated; the child was stopped by a signal; or
the child was resumed by a signal. In the case of a terminated
child, performing a walt allows the system to release the re-
sources assoclated with the child; if a wait 1s not performed,
then the terminated child remains in a "zombie" state (see NOTES
below) .




Parts of waitpid()

pid_t waitpid(pid_t pid, int *_Nullable wstatus, int options);

* pid
- PID to wait on, or -1 for any child
* wstatus
- pointer to an int to store exit status of process.
— Nullable tells reader OK to be NULL
* options
- we'll leave as 0; can specify non-blocking (don't wait)
e.g., WNOHANG

26-01-19 6



* waltpid() takes a pointer for wstatus
- Calling code (e.g., main())

- waitpid() given a pointer to this space

- waltpid() writes an answer into that space

* Caller declares a variable sowaitpid() has

somewhere to write info; called an output parameter

pid_t pid = fork();
if (pid) {
int wstatus = 0;
if (waitpid(pid, &wstatus, 0) == -1) {
perror("waitpid"”);
exit (EXIT_FAILURE);
3
3

26-01-19 7



walt() Status Check Macros

* Why did the child terminate?
- wstatus is a complicated value

— Normally: exit (), orreturn frommain()

if (WIFEXITED(wstatus)) {
printf("Reason: %d\n", WEXITSTATUS(wstatus));

}

* Terminated by Signal?

if (WIFSIGNALED(wstatus)) {
printf("Terminated by signal # %d\n", WTERMSIG(status));

}

26-01-19 8



Activity -wait()

* Write a program that (10m)
- Creates a child process

- Child process runs “1s -a -1"

- Parent process waits for the child process to
terminate using wali1tpid()

- If child exits normally, print the exit status

* Hints
- OK to reuse previous code examples from class

- Use execl(), pass in arguments separately

26-01-19 9



Zombies and Orphans

26-01-19




* What happens when an application terminates?
- OS retains some state information of terminated processes (so

parent can find out reason for exiting)

- This takes up some memory
- Callingwait() on aterminated process frees this memory

 Zombie
— Process state where child process has terminated, but the

parent process hasn't called wait () yet

I.e. it's dead, but not completely

- Having many zombies uses kernel resources; it's important to
walit() on a child process

26-01-19



* Orphan
- The child process is running, but the parent process
has terminated

- Orphan processes no longer have a parent process

* Linux handling of orphan processes
— Orphan child process becomes a child process of init

* init is the first user process started, so every
process is its (indirect) child

- init callswait () on all child processes

26-01-19




Audience Participation -wait()

* Which of the following is true about wait()?

a) wait() takes care of orphans
b) wait() combats the spread of zombies
c) wait() is areplacement for sleep()

d) wait() allows a child process to get input from its parent

26-01-19




What went wrong?
errno

26-01-19




Mman errno

* Run

> man errno

- What do you notice about it?

* Look at
— Description

- When is it useful?
- What is its type?

- How can my program get access to it?

26-01-19




errno and perror

* errnois an integer variable that is set by system calls and library
functions when there is an error

- Adds more information about which error has occurred

- Itis definedinerrno.h

- Can print an explanation from just the errno using
perror("your message here")
if (somecall() == -1) {

if (errno == EACCESS) {
printf(”"You don’t have access.\n");

} else {
perror("somecall() failed"”)
3
}
e errnoissimilartowstatus fromwait()

- Status code set by a system call if there's an error

26-01-19




Demo - Fork Bomb With Errors

fork() sets errno on failure

- Check possible errno values

Demo?
> ulimit -S -u 100

- Fork-bomb with error output

#include <errno.h>
#include <stdio.h>
#tinclude <unistd.h>

int main() {
while (1) {
if (fork() == -1) {
char xstr = NULL;
switch (errno) {
case EAGAIN:
str = "EAGAIN”;
break;
case ENOMEM:
str = "ENOMEM”;
break;
case ENOSYS:
str = "ENOSYS”;
break;
default:
break;
3
perror(”"fork");
printf("%s\n", str);
3
}
}

26- 01 19



* Waiting on your children
- wait(), waitpid()

- Pass &wstatus to find out why a child terminated

- Terminated process becomes a zombie until it's
walt()ed for

- Terminating the parent creates orphan processes

* Use errnoto get error codes
- Print error message to screen with perror()

26-01-19




	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18

