
1 26-01-19

Processes:
waitpid(), errno

Adapted by Joseph Lunderville
from slides by Dr. Brian Fraser

and course material by Dr. Steve Ko

26-01-19 2

Topics
● How can a parent process wait for a child?
● How can we know what errors have happened?

3 26-01-19

Waiting for a child:
wait()

26-01-19 4

wait()

● wait()
– waits on a child process's termination and obtains its

status.
– Family of calls; we'll usually use waitpid(),

but refer to them as just wait()
● Common usage

pid_t pid = fork();
if (pid != 0) {
 // Parent waits for child process to finish
 if (waitpid(pid, ...) == -1) {
 // Exit on error
 }
} else {
 // Child does something.. exec?
}

26-01-19 5

man 2 wait

A lot to understand in just
a single syscall!

What are these options?

26-01-19 6

Parts of waitpid()

● pid
– PID to wait on, or -1 for any child

● wstatus
– pointer to an int to store exit status of process.
– _Nullable tells reader OK to be NULL

● options
– we'll leave as 0; can specify non-blocking (don’t wait)

e.g., WNOHANG

pid_t waitpid(pid_t pid, int *_Nullable wstatus, int options);

26-01-19 7

wstatus

● waitpid() takes a pointer for wstatus
– Calling code (e.g., main())
– waitpid() given a pointer to this space
– waitpid() writes an answer into that space

● Caller declares a variable so waitpid() has
somewhere to write info; called an output parameter

pid_t pid = fork();
if (pid) {
 int wstatus = 0;
 if (waitpid(pid, &wstatus, 0) == -1) {
 perror("waitpid");
 exit(EXIT_FAILURE);
 }
}

26-01-19 8

wait() Status Check Macros
● Why did the child terminate?

– wstatus is a complicated value
– Normally: exit(), or return from main()

● Terminated by Signal?

if (WIFEXITED(wstatus)) {
 printf("Reason: %d\n", WEXITSTATUS(wstatus));
}

if (WIFSIGNALED(wstatus)) {
 printf("Terminated by signal # %d\n", WTERMSIG(status));
}

26-01-19 9

Activity - wait()
● Write a program that (10m)

– Creates a child process
– Child process runs “ls -a -l”
– Parent process waits for the child process to

terminate using waitpid()
– If child exits normally, print the exit status

● Hints
– OK to reuse previous code examples from class
– Use execl(), pass in arguments separately

10 26-01-19

Zombies and Orphans

26-01-19 11

Zombies
● What happens when an application terminates?

– OS retains some state information of terminated processes (so
parent can find out reason for exiting)

– This takes up some memory
– Calling wait() on a terminated process frees this memory

● Zombie
– Process state where child process has terminated, but the

parent process hasn't called wait() yet
I.e. it's dead, but not completely

– Having many zombies uses kernel resources; it’s important to
wait() on a child process

26-01-19 12

Orphans
● Orphan

– The child process is running, but the parent process
has terminated

– Orphan processes no longer have a parent process
● Linux handling of orphan processes

– Orphan child process becomes a child process of init
● init is the first user process started, so every

process is its (indirect) child
– init calls wait() on all child processes

26-01-19 13

Audience Participation - wait()
● Which of the following is true about wait()?

a) wait() takes care of orphans
b) wait() combats the spread of zombies
c) wait() is a replacement for sleep()
d) wait() allows a child process to get input from its parent

14 26-01-19

What went wrong?
errno

26-01-19 15

man errno

● Run
> man errno

– What do you notice about it?
● Look at

– Description
– When is it useful?
– What is its type?
– How can my program get access to it?

26-01-19 16

errno and perror
● errno is an integer variable that is set by system calls and library

functions when there is an error
– Adds more information about which error has occurred
– It is defined in errno.h
– Can print an explanation from just the errno using
perror("your message here")

● errno is similar to wstatus from wait()
– Status code set by a system call if there’s an error

if (somecall() == -1) {
 if (errno == EACCESS) {
 printf("You don't have access.\n");
 } else {
 perror("somecall() failed")
 }
}

26-01-19 17

Demo – Fork Bomb With Errors
● fork() sets errno on failure

> man fork

– Check possible errno values
● Demo?

> ulimit -S -u 100

– Fork-bomb with error output

#include <errno.h>
#include <stdio.h>
#include <unistd.h>

int main() {
 while (1) {
 if (fork() == -1) {
 char *str = NULL;
 switch (errno) {
 case EAGAIN:
 str = "EAGAIN";
 break;
 case ENOMEM:
 str = "ENOMEM";
 break;
 case ENOSYS:
 str = "ENOSYS";
 break;
 default:
 break;
 }
 perror("fork");
 printf("%s\n", str);
 }
 }
}

26-01-19 18

Summary
● Waiting on your children

– wait(), waitpid()
– Pass &wstatus to find out why a child terminated
– Terminated process becomes a zombie until it’s
wait()ed for

– Terminating the parent creates orphan processes
● Use errno to get error codes

– Print error message to screen with perror()

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18

