
26-01-19 1

Processes:
fork(), exec()

Adapted by Joseph Lunderville
from slides by Dr. Brian Fraser

and course material by Dr. Steve Ko

26-01-19 2

Topics
● How can we create a new process?
● How can we run a different program?

...and why aren’t these the same thing?

26-01-19 3

Making a New Process With
fork()

26-01-19 4

Making a New Process
● Each process has its own address space

● Changing a variable's value in one process does not affect any
variables in the other process

● Pointers in one process cannot access memory in another
● Processes can only communicate with each other through the OS,

and only if they both agree how
● Making a new process

● Initial process (the parent) wants to make a new process (the
child)

● Parent will call fork() to have the OS start a new process
● fork() is a system call (syscall), as well as a POSIX function

<footer>26-01-19 5

fork()
● fork() creates a child process that is an identical copy of the calling process

(except for one tiny detail...)
– fork() is called once, but it returns twice!

1) In the initial process (parent), just as we expect

2) In the new process (child)!

● Analogy: It's like waking up after being cloned
– Are you the original person?

– Are you the clone?

● fork() returns a process ID (PID)
– For the parent, the PID of the child (or -1 on failure)

– For the child, fork() returns 0

26-01-19 6

man fork()

● Check its return value out

26-01-19 7

Activity – fork()
● Write a program that (5m)

– Calls fork()
– Keeps calling sleep() with some timeout value.

● Hint
– Modify the sleep() example.
– Get more info: man fork
– You need to write one line of code.

● Discussion
– Run it; check btop in tree mode
– There should be a new child process
– Look at the PID in btop
– Kill both processes

26-01-19 8

Activity – fork() Bomb!
● Write a fork bomb (5m)

– i.e., a program that continually calls fork()
– DO NOT RUN IT (yet), but you can compile it

● Demo fork bomb
– This might kill the container
– Docker might not respond
– Your computer might give up

● Why did this happen?
– Each process calls fork()
– Exponential growth in processes
– Denial of service attack consuming kernel resources

26-01-19 9

Understanding fork()
● Understanding fork

– We have one C program,
which clones itself with fork()

– Until we call fork(),
there is only one process.

● fork() "returns twice"; once into
each process

– The parent and the child are
the same program (same source
file)

– After fork() each process
executes independently

– Both processes (and the shell!)
all share the screen, so output
gets mixed up

int main()
{
 pid = fork();
 if (pid == ...) {
 printf(“Parent!”);
 } else {
 printf(“Child!”);
 }
}

At the start: one process

int main()
{
 pid = fork();
 if (pid == ...) {
 printf(“Parent!”);
 } else {
 printf(“Child!”);
 }
}

int main()
{
 pid = fork();
 if (pid == ...) {
 printf(“Parent!”);
 } else {
 printf(“Child!”);
 }
}

After fork(): two processes

26-01-19 10

Activity - fork() with PIDs
● Write a program that (15m)

1) Prints its PID and its parent's PID
● “man getpid” and “man getppid” to get the PIDs

2) Calls fork()
● If parent: print "parent", its PID, and the child PID
● If child: print "child", its PID, and the parent's PID

● Hints
– This is a single program, but becomes multiple processes
– The parent and the child need to do different things
– Use “if-else” on the return value of “fork()” to differentiate the behaviour

26-01-19 11

Audience Participation - fork()
● How many processes will have been created by

running this code (at least 1 for the original)?

● What number will
this code output?

a) 2
b) 3
c) 4
d) 7

b)a)

26-01-19 12

Bonus Activity
● Write a program that

– Spawns 10 child processes.
– Each child finds 10 big prime numbers.
– Parent process waits 10s and exits.

● While waiting, parent prints "Still waiting..." each
second

<footer>26-01-19 13

Replace Current Program in
Process With exec()

26-01-19 14

Purpose of exec()
● When called, exec() will

– Remove the currently running program from this
process' memory

– Load a new program into memory
– Start executing the new program

● exec() completely replaces the calling process;
it is replaced by a new program.

26-01-19 15

Audience Participation - exec() Idea
● What words will the following pseudo-code program output?

● What happens to rest of a program after calling exec()?
– It won't get executed; it's replaced in memory.
– Analogy:

● If a process is like a body, then exec() is a brain
transplant

a) Hi
b) Hi, Bye
c) Hi, Bye, Bye,
d) Hi, Bye, Hi, Bye,

int main()
{
 printf(“Hi\n”);
 fork();
 exec(....);
 printf(“Bye\n”);
}

26-01-19 16

man 3 exec

● Many different
exec() flavours

26-01-19 17

exec() Flavours
● exec() family has functions like:

– execl(...), execv(...)
execlp(...),execvp(...)
execle(...),execvpe(...)

● l,v Distinguish how command line arguments are passed
– If it has an “l”, pass each argument individually:

execl("/bin/echo", "/bin/echo", "Yes!", "No!");

– If it has a ‘v’, pass arguments in an array:
char* args[] = {"/bin/echo", "hello", "world"};
execv("/bin/echo", args);

● p Use the search path to find the program
– With execlp() you can run “echo” and Linux will find it for you;

with execl() you need to tell Linux where to find echo.
● e Specify the environment variables as well

26-01-19 18

Subtleties of Arguments
● When a program is executed, OS hands it some command-line

arguments
– args[0] (‘arg0’) is the program’s name on disk – by convention!
– args[1] and beyond are the other arguments.

● exec() calls take
– What program to execute
– What arguments to pass the new process

● When calling exec() functions, you specify the arguments
– We must make these arguments start with the program

name
– So we end up listing it twice, e.g.
execl("/bin/ls", "/bin/ls", "/home/", "-l",
NULL);

26-01-19 19

Activity - exec()
● Write a program that (15m)

1) Creates a child process
2) Parent: call any “exec” function that executes “ls -a”
3) Child: call any “exec” function that executes “ls -a -l -h”

● (same as “ls -alh” but spelled out)
● Discussion

– At end of our program, if we add:
printf("%d\n", getpid())

– What will the parent print out?
– What will the child print out?

26-01-19 20

Summary
● Create a new process using fork()

– Clones current process.
– fork() returns twice:

● Parent knows it’s the parent because
return PID is non-zero (= the child’s PID)

● Child knows it’s the child because
return PID is zero

● Replace a running program with exec()
– Pass in what program you want loaded

into the current process.
– Completely replaces the process’s memory space

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20

