Processes:
fork(), exec()

Adapted by Joseph Lunderville
from slides by Dr. Brian Fraser
and course material by Dr. Steve Ko

26-01-19 1

* How can we create a new process?
* How can we run a different program?

...and why aren’t these the same thing?

26-01-19 2

Making a New Process With
fork()

26-01-19 3

Making a New Process

* Each process has its own address space

* Changing a variable's value in one process does not affect any
variables in the other process

* Pointers in one process cannot access memory in another

* Processes can only communicate with each other through the OS,
and only if they both agree how

* Making a new process

* Initial process (the parent) wants to make a new process (the
child)

* Parent will call fork() to have the OS start a new process

* fork() is a system call (syscall), as well as a POSIX function

26-01-19 4

* fork() creates a child process that is an identical copy of the calling process
(except for one tiny detail...)

- fork() is called once, but it returns twice!
1) In the initial process (parent), just as we expect

2) In the new process (child)!

* Analogy: It's like waking up after being cloned
— Areyou the original person?

- Areyou the clone?

* fork() returns a process ID (PID)
- For the parent, the PID of the child (or -1 on failure)

- For the child, fork() returns 0

26-01-19 <footer>

* Check its return value out

Linux Programmer's Manual FORK(2)

26-01-19

FORK(2)

NAME

fork - create a child process

SYNOPSIS

#include <sys/types.h>
#include <unistd.h>

pid t fork(void);

DESCRIPTION

fork() creates a new process by duplicating the calling process. The new
process 1is referred to as the child process. The calling process 1is re-
ferred to as the parent process.

The child process and the parent process run in separate memory spaces.
At the time of fork() both memory spaces have the same content. Memory
writes, file mappings (mmap(2)), and unmappings (munmap(2)) performed by
one of the processes do not affect the other.

Activity - Tork()

* Write a program that (5m)
= Calls fork()

- Keeps calling sleep() with some timeout value.
* Hint

- Modify the sleep() example.

- Get more info: man fork <stdio.h>

)) <unistd.h>
- You need to write one line of code.

.) main
* Discussion
- Runit; check btop in tree mode P{iﬂtf "Sleeping\n"
sleep

— There should be a new child process

- Look atthe PID in btop

printf("DONE\n"

- Kill both processes

26-01-19 7

Activity - fork() Bomb!

* Write a fork bomb (5m)
- i.e., a program that continually calls fork()

- DO NOT RUN IT (yet), but you can compile it
* Demo fork bomb

- This might kill the container
- Docker might not respond 3 d — 3
- Your computer might give up

* Why did this happen? h % <4 h %

- Each process calls fork()
- Exponential growth in processes

- Denial of service attack consuming kernel resources

26-01-19 8

Understanding fork()

* Understanding fork
~ We have one C program,
which clones itself with fork()

Until we call fork(),
there is only one process.

* fork() "returns twice"; once into
each process
~ The parent and the child are
the same program (same source
file)
~— After fork() each process
executes independently

Both processes (and the shell!)
all share the screen, so output
gets mixed up

At the start: one process

int main()

= ...){
printf(“Parent!”);
} else {
printf(“Child!”);
3

3

After fork(): two processes

int main()

int main()

pid = fork();
:>if (pid == ...) {
printf(“Parent!”);
} else {
printf(“Child!”);
3

}

pid = fork();
[>if (pid == ...) {
printf(“Parent!”);
} else {
printf(“Child!”);
3
3

26-01-19 9

Activity - fork() with PIDs

* Write a program that (15m)
1) Prints its PID and its parent's PID

* “man getpid”and“man getppid”to getthe PIDs
2) Calls fork()
* If parent: print "parent”, its PID, and the child PID

 If child: print "child", its PID, and the parent's PID

* Hints
- This is a single program, but becomes multiple processes

- The parent and the child need to do different things

- Use “if-else” on the return value of “fork()"” to differentiate the behaviour

26-01-19

Audience Participation - Tork()

* How many processes will have been created by
running this code (at least 1 for the original)?

. malin
main
fork

a) 2

* What number will b) 3
this code output? c) 4
d) 7

26-01-19

Bonus Activity

* Write a program that
- Spawns 10 child processes.

- Each child finds 10 big prime numbers.
- Parent process waits 10s and exits.

* While waiting, parent prints "Still waiting..." each
second

26-01-19

Replace Current Program in
Process With exec ()

26-01-19 <footer>

Purpose of exec()

 When called, exec() will
— Remove the currently running program from this
process' memory

- Load a new program into memory
- Start executing the new program

* exec() completely replaces the calling process;
it is replaced by a new program.

26-01-19

Audience Participation - exec () Idea

* What words will the following pseudo-code program output?

int main()

{
printf(“Hi\n”);
fork();
exec(....);
printf(“Bye\n”);

a) Hi

b) Hi, Bye

c) Hi, Bye, Bye,

d) Hi, Bye, Hi, Bye,

* What happens to rest of a program after calling exec()?
- It won't get executed; it's replaced in memory.

- Analogy:

 If a process is like a body, then exec() is a brain

transplant

26-01-19

man 3 exec

XEC(3) Linux Programmer's Manual EXEC(3)
AME
°® M d' t execl, execlp, execle, execv, execvp, execvpe - execute a file
any differen
EYNOPSIS

exeC() flavours #include <unistd.h>

extern char **environ;

int execl(const char *pathname, const char *arg, ...
/* (char *) NULL */);
int execlp(const char *file, const char *arg, ...
/* (char *) NULL */);
int execle(const char *pathname, const char *arg, ...
/*, (char *) NULL, char *const envp[] */);
int execv(const char *pathname, char *const argv[]);
int execvp(const char *file, char *const argv[]);
int execvpe(const char *file, char *const argv[],
char *const envp[]);

Feature Test Macro Requirements for glibc (see feature test macros(7)):
execvpe(): GNU SOURCE

DESCRIPTION

The exec() family of functions replaces the current process image with a
new process image. The functions described in this manual page are lay-
ered on top of execve(2). (See the manual page for execve(2) for further
details about the replacement of the current process image.)

The initial argument for these functions is the name of a file that is to
be executed.

26-01-19 16

exec () Flavours

* exec() family has functions like:

- execl(...), execv(...)
execlp(...),execvp(...)
execle(...),execvpe(...)

* |,v Distinquish how command line arguments are passed

- Ifithas an”l”, pass each argument individually:
execl("/bin/echo", "/bin/echo", "Yes!", "No!");:

- Ifithasa'v, pass arguments in an array:
char* args[] = {"/bin/echo", "hello", "world"};
execv("/bin/echo", args);

* p Use the search path to find the program
- With execlp() you can run “echo” and Linux will find it for you;
with execl() you need to tell Linux where to find echo.

* e Specify the environment variables as well

26-01-19

Subtleties of Arguments

When a program is executed, OS hands it some command-line
arguments

~ args[0] (‘largQ’) is the program’s name on disk - by convention!
~ args[1] and beyond are the other arguments.

* exec() calls take
~ What program to execute

~ What arguments to pass the new process

When calling exec() functions, you specify the arguments
~ We must make these arguments start with the program

name
~ So we end up listing it twice, e,Iq,
ﬁéff}("/bin/ls", "/bin/Is", "/home/", "-1",

26-01-19

Activity - exec ()

* Write a program that (15m)
1) Creates a child process

2) Parent: call any “exec” function that executes “Is -a”
3) Child: call any “exec” function that executes “Is -a -l -h”

* (same as “Is -alh” but spelled out)

 Discussion

— At end of our program, if we add:
printf("%d\n", getpid())

- What will the parent print out?
— What will the child print out?

26-01-19

* Create a new process using fork()
- Clones current process.

- fork() returns twice:

* Parent knows it's the parent because
return PID is non-zero (= the child’s PID)

* Child knows it's the child because
return PID is zero

* Replace a running program with exec()
- Pass in what program you want loaded
into the current process.

- Completely replaces the process’'s memory space

26-01-19

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20

