
26-01-19 1

Processes:
sleep()

Adapted by Joseph Lunderville
from slides by Dr. Brian Fraser

and course material by Dr. Steve Ko

26-01-19 2

Topics
● What specifically is a running program?
● Writing C code to call a syscall: sleep()
● Using man pages
● Fun with some C pointers

26-01-19 3

Pair Programming
● In lecture, we'll do lots of programming activities!

– You and a partner will use
Pair Programming

– Short video: Pair Programming
(by Code.org)

● Suggestion
– Driver typing the code
– Navigator look up the man page
– Both are creating the code!

● Short video: ordinary pair programming session (30s)

https://youtu.be/vgkahOzFH2Q?si=c3SLrS9vjrzGS8Ub
https://youtu.be/PdKup_ybJro?si=DXz4qAMG9CHa03e8
https://youtu.be/vgkahOzFH2Q?si=c3SLrS9vjrzGS8Ub
https://youtu.be/PdKup_ybJro?si=DXz4qAMG9CHa03e8

<footer>26-01-19 4

Process

26-01-19 5

Process
● What is a program?

– Basically a compiled executable file
– But unless you run it, it’s just a file!

● What is a process?
– Basically a running program
– It’s not quite that simple, we’ll learn more later

26-01-19 6

Program In Memory
● CPU can execute instructions from memory
● Program (the executable) stored on disk

– Slow data access (fetch) speed due to
distance, spinning drive, etc.

– CPU cannot access bytes without loading
them into memory

– So, a program must be in memory to run

Bytes in Memory:
Fast CPU access

Hard Drive

CPU

Data loaded into
main memory

Slow Storage

Memory Hierarchy

CPU
Register
Cache

Main Memory
(RAM)

Solid State Drive

Hard drives

26-01-19 7

Start Execution
● To start executing a program, the OS will

– Create a memory space in RAM for the
program to run

– Load the machine code from the
program’s file on disk into memory

– Set up part of memory space for data
(variables, ...) More later!

– Start executing the program from
memory (makes it a process!)

Area for
instructions

Areas(s) for
data

(more later!)

...

26-01-19 8

Controlling a Process
● Controlling a process

– Programmers use system calls (syscalls) to control
processes

● Some core process syscalls include
– fork()

Create a new process by cloning current one
– exec()

Replace current process with another executable
(a family of different calls serve the same purpose)

– wait()
Wait until a created process finishes its work

26-01-19 9

Audience Participation - Process
● What is the difference between a process and a

program?

a) A process is a program loaded into memory and running.
b) A program is a process loaded into memory and running.
c) A process is loaded from RAM to the hard drive by the OS.
d) A program is loaded from RAM to the hard drive by the OS.

<footer>26-01-19 10

Coding and Process Activity

26-01-19 11

Ready to Code
● Open two terminals (tabs or windows)

– One terminal for coding:
● Launch the CMPT 201 container
> docker start -ai cmpt201

● Make a folder for our work
> mkdir -p ~lecture/02-forkexecwait

– Another terminal to look up man pages:
● Connect to the already running container
> docker exec -it cmpt201 zsh login–

● Test this out by running
> man 3 printf

If you haven’t downloaded the docker image yet, run:
> docker create it name cmpt201 ghcr.io/sfu-cmpt-201/base– –

26-01-19 12

Activity - sleep()
● Write a program that calls “sleep” in a loop with some

timeout (pick a small nonzero number) (5m)
– Read the man page for sleep():
> man 3 sleep
(“3” specifies the manual section: without it, you get the
shell command which is also named sleep)

● In a third terminal, run btop
– Connect to the running container again using
docker exec...

– btop is a good tool to visualize parent/child
relationships

26-01-19 13

Solution - sleep()
● See process information:
btop

– Use tree view (press e)
– Each process has a parent

(except init and kthreadd;
not shown in containers).

– Our container’s zsh runs
a.out

On Linux shows init In container, no init

26-01-19 14

Audience Participation - Docker
● Which command connects to an already running

Docker container?
● Which command downloads the Docker container?
● Which command launches the Docker container?

a) docker start -ai cmpt201
b) docker exec -it cmpt201 zsh --login
c) docker git clone github.com/sfu-cmpt-201/base
d) docker create -it --name cmpt201 ghcr.io/sfu-cmpt-201/base

<footer>26-01-19 15

Reading a man Page

26-01-19 16

man Pages
● Reading a man page

– Our primary way to learn functions/system calls for systems programming
– It takes practice to effectively read a man page!

● The command
man <thing>

– e.g., “man ls”, “man cd”

● Section numbers
– Choose between two pages with the same name
– Most relevant sections for CMPT 201:

1 – general (shell) commands, e.g. “man 1 ls”

2 – system calls, e.g. “man 2 fork”

3 – C standard library functions, e.g. “man 3 printf”

26-01-19 17

Learning a Syscall
● Problem

– I know a syscall;
how do I use it?

● Steps
1) Is this what I want?
2)How do I call it?
3)What does it give me?
4)How can it go wrong?

(errno, feature test)

26-01-19 18

Learning a Syscall
1) Is this what I want?

– Read description section
– Skim for relevant part (this is a

useful skill!

2) How do I call it?
– Read synopsis (prototypes)
– Check header files and return

type
– Check arguments (in and out)

3) What does it give me?
– Read return value section
– Pay attention to output

parameters (pointers)

26-01-19 19

Learning a Syscall
● How can it go wrong?

(errno, feature test)
– What errors possible?

Read errors section (more
later)

– Does it require a feature
macro?
E.g. nanosleep()...

26-01-19 20

Audience Participation - Pointers
● What does this output?

a) -4 x 5 = -20

b) 4 x 5 = 20

c) 4 x 5 = -20

d) -4 x 5 = 20

26-01-19 21

Review C Pointers
● Note char** ppdigit

– x is a pointer-to-a-
pointer

– Used for output
parameters

● Use of **
– Calling code passes in

the address of their
pointer

– Function sets where
that pointer points

26-01-19 22

Summary
● Processes are programs executing from memory (RAM)

– Each process has its own memory space

● C Programming
– Use man pages to lookup functions
– Pointers and pointers-to-pointers used as output parameters

● Development Ideas
– Use multiple terminal tabs/windows
– Read documentation first!
– Code a little at a time: write small experiments

● Test unfamiliar syscalls, APIs, or data structures in isolation
– Plan before writing larger chunks

● sleep() puts function to sleep

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22

