Processes:
sleep()

Adapted by Joseph Lunderville
from slides by Dr. Brian Fraser
and course material by Dr. Steve Ko

26-01-19 1

* What specifically is a running program?
* Writing C code to call a syscall: sleep()
* Using man pages

* Fun with some C pointers

26-01-19 2

Pair Programming

* Inlecture, we'll do lots of programming activities!
- You and a partner will use
Pair Programming

- Short video: Pair Programming
(by Code.orq)

* Suggestion
- Driver typing the code

- Navigator look up the man page

- Both are creating the code!

* Shortvideo: ordinary pair programming session (305)5“'"

26-01-19 3

https://youtu.be/vgkahOzFH2Q?si=c3SLrS9vjrzGS8Ub
https://youtu.be/PdKup_ybJro?si=DXz4qAMG9CHa03e8
https://youtu.be/vgkahOzFH2Q?si=c3SLrS9vjrzGS8Ub
https://youtu.be/PdKup_ybJro?si=DXz4qAMG9CHa03e8

Process

26-01-19 <footer>

Process

* Whatis a program?
- Basically a compiled executable file

- But unless you run it, it's just a file!

* Whatis a process?
- Basically a running program

- It's not quite that simple, we’'ll learn more later

26-01-19 5

Program In Memory

CPU
Reqister

Cache

Main Memory
(RAM)

Solid State Drive

Hard drives

Memory Hierarchy

Hard Drive

Slow Storage

* CPU can execute instructions from memory

* Program (the executable) stored on disk
- Slow data access (fetch) speed due to
distance, spinning drive, etc.

- CPU cannot access bytes without loading
them into memory

- So, a program must be in memory to run

Data loaded into

Mmain memory Bytes in Memory:

Fast CPU access CPU

26-01-19

Start Execution

* To start executing a program, the OS will Area for
- Create a memory space in RAM for the | Instructions
program to run
- Load the machine code from the Areas(s) for
program’s file on disk into memory data

- Set up part of memory space for data
(variables, ...) More later!

(more later!)

- Start executing the program from
memory (makes it a process!)

26-01-19 7

Controlling a Process

* Controlling a process
- Programmers use system calls (syscalls) to control
processes

* Some core process syscalls include
- fork()
Create a new process by cloning current one

- exec()
Replace current process with another executable

(a family of different calls serve the same purpose)

- wait()
Wait until a created process finishes its work

26-01-19 8

Audience Participation - Process

* What is the difference between a process and a
program?

a) A process is a program loaded into memory and running.
b) A program is a process loaded into memory and running.
c) A process is loaded from RAM to the hard drive by the OS.
d) A program is loaded from RAM to the hard drive by the OS.

26-01-19 9

Coding and Process Activity

26-01-19 <footer>

Ready to Code

* Open two terminals (tabs or windows)
- One terminal for coding:

* Launch the CMPT 201 container
> docker start -ai cmpt201

* Make a folder for our work

> mkdir -p ~lecture/02-forkexecwait

- Another terminal to look up man pages:

* Connect to the already running container
> docker exec -it cmpt201 zsh —login

* Test this out by running
> man 3 printf

If you haven't downloaded the docker image yet, run:
> docker create —it —name cmpt201 ghcr.io/sfu-cmpt-201/base

26-01-19

Activity - sleep()

* Write a program that calls “sleep” in a loop with some

timeout (pick a small nonzero number) (5m)

~ Read the man page for sleep():

(“3"” specifies the manual section: without it, you get the
shell command which is also named sleep)

* In a third terminal, run btop

~ Connect to the running container again using
docker exec...

~ btop is a good tool to visualize parent/child
relationships

26-01-19

Solution - sleep()

* See process information:
btop

~ Use tree view (press e)

~ Each process has a parent
(except init and kthreadd;
not shown in containers).

~ Qur container's zsh runs
a.out

cpu lazy
Cpu% 1

everse tre
User:

proc ilter

Tree: MemB

On Linux shows init

C sleep.c > ...
1 #include <stdio.h>
2 #include <string.h>
3 #include <unistd.h>
4
5
& int main()
7
8 char* message = "Hello world!\n";
9 for (int 1 = @; 1 < strlen(message); i++) {
10 printf("%c", message[i]),
11 fflush(stdout);
12 sleep(2);
13 b
14 printf("\n");
15 printf("DONE\N"),
16 }

everse tre

User: MemB

cmpt+ 6.8M ...
cmpt+ 6.2M

cmpt+ 6.8M

cmpt+ 9.3M

ilter ore

proc
Tree:
[-]1-128 zsh

per-

694 btop
— 66 zsh

In container, no init

26-01-19

Audience Participation - Docker

* Which command connects to an already running
Docker container?

* Which command downloads the Docker container?

* Which command launches the Docker container?

a) docker start -ai cmpt201

b) docker exec -it cmpt201 zsh --login

C) docker git clone github.com/sfu-cmpt-201/base

d) docker create -it --name cmpt201 ghcr.io/sfu-cmpt-201/base

26-01-19

Reading a man Page

26-01-19 <footer>

man Pages

* Reading a man page
= Our primary way to learn functions/system calls for systems programming

- It takes practice to effectively read a man page!

* The command

n u

- e.g., “man 1s”, “man cd”

* Section numbers
- Choose between two pages with the same name

- Most relevant sections for CMPT 201:
1 - general (shell) commands, e.g. “man 1 1s”
2 - system calls, e.g. “man 2 fork”

3 - Cstandard library functions, e.g. “man 3 printf”

26-01-19

Library Functions Manual atoi(3)

L]
Lea rn I n g a Sysca | I atol, atol, atoll - convert a string to an integer

LIBRARY
Standard C library (libc, -1c)

° Problem SYNOPSIS

#include <stdlib.h>

B I knOW a Syscalll int atoi(const char *pnptr);
. long atol(const char *nptr);
hOW dO I Use It? long long atoll(const char *nptr);

Feature Test Macro Requirements for glibc (see fea-

{ Steps ture_test_macros(7)):
1)Is this what I want? O o8 SoURCE

|| /* glibc <= 2.19: */ _BSD_SOURCE || _SVID_SOURCE

2)How do I call it? N

The atoi() function converts the initial portion of the

3)What does it give me? string pointed to by nptr to int. The behavior is the

same as

4)How can it go wrong? strtol(nptr, NULL, 10);
(errno’ featu re test) except that atoi() does not detect errors.

The atol() and ateoll{) functions behave the same as
atoi(), except that they convert the initial portion of
the string to their return type of long or long long.

RETURN VALUE
26-01-19 The converted value or on error.

Learning a Syscall

1) Is this what I want?
- Read description section

— Skim for relevant part (this is a
useful skill!

2) How do I call it?
Read synopsis (prototypes)

- Check header files and return
type
- Check arguments (in and out)

3) What does it give me?
- Read return value section

- Pay attention to output
parameters (pointers)

Library Functions Manual atoi(3)

atol, atol, atoll - convert a string to an integer
LIBRARY
Standard C library (libc, -1c)
SYNOPSIS
#include <stdlib.h>
int atoi(const char *pnptr);
long atol(const char *nptr);
long long atoll(const char *nptr);
Feature Test Macro Requirements for glibc (see fea-
ture_test_macros(7)):
atoll():
_IS0CS9_SO0OURCE
|| /* glibc <= 2.19: */ _BSD_SOURCE || _SVID_SOURCE
DESCRIPTION
The atoi() function converts the initial portion of the

RETURN
26-01-19

The behavior is the

string pointed to by nptr to int.

same as
strtol({nptr, NULL, 1@);

except that atoi() does not detect errors.

The atol() and ateoll{) functions behave the same as

atoi(), except that they convert the initial portion of

the string to their return type of long or long long.

VALUE
The converted value or @ on error.

Library Functions Manual atoi(3)

L]
Lea rn I n g a Sysca | I atol, atol, atoll - convert a string to an integer

LIBRARY
Standard C library (libc, -1c)
* How can it go wrong? SYNOPSTS
#include <stdlib.h>
(errno, feature test)
_ H 2 int atoi(const char *pnptr);
What errors possible: long atol(const char *nptr):
Read errors section (more long long atoll(const char *nptr);
|ater) Feature Test Macro Requirements for glibc (see fea-

ture_test_macros(7)):

- Does it require a feature

atoll():
macro? _IS0C99_SOURCE
|| /* glibc <= 2.19: */ _BSD_SOURCE || _SVID_SOURCE
E.g. nanosleep()...
nanosleep(): DESCRIPTION
POSIX C SOURCE >= 1993@9L The atoi() function converts the initial portion of the
- o string pointed to by nptr to int. The behavior is the
ERRORS
same as
EFAULT Problem with copying information from user space.
EINTR The pause has been interrupted by a signal that was strtol(nptr, NULL, 10);
delivered to the thread (see signal(7)). The 1re-
maining sleep time has been written into *rem so except that atoi() does not detect errors.
that the thread can easily call nanosleep() again

and continue with the pause. The atol() and ateoll{) functions behave the same as

EINVAL The value in the tv nsec field was not in the range atoi(), except that they convert the initial portion of
[@, 999999999] or tv_sec was negative. the string to their return type of long or long long.

RETURN VALUE
26-01-19 The converted value or @ on error.

Audience Participation - Pointers

* What does this output?

a) -4 x5 = -20

1 #include <stdio.h> -

2 #include <stdlib.h> b) 4 x 5= 20
? c) 4 x5=-20
4 int make_abs _get product(int *pA, int *pB)

5 { d) -4 x5 = 20
6 *pA = abs(*ph);

7 *pB = abs(*pB);

8 return *pA * *pB;

9 1}
1@
11 int main()
12
13 int w = -4;
14 int h = 5;
15 int area = make_abs _get product(&w, &h);
16 printf({"%d x %d = &d\n", w, h, area);
17}

26-01-19

Review C Pointers

* Note char** ppdigit
— X s a pointer-to-a-

pointer
- Used for output o
parameters -
13
e Use Of** 14
. .15
- Calling code passes in *
the address of their =
. 197
pOInter 20
21
- Function sets where
that pointer points
26
27

26-01-19

GO~ v W s b
RN,

#include <stdioc.h>
#include <stdbool.h>
#include <string.h>
#include <ctype.h>

bool find first digit(char® data, int n, char** EEE&%%E}
{
for (int 1 = @; 1 < n; i++) {
if (isdigit{data[i])) {
*ppdigit = &data[i];

e W e

return true;

}
}
return false;
h
int main()
{
char® data = "I wa5 h3r3!l\n";
char® pfirst digit = NULL;
if (find first digit(data, strlen(data), &pfirst_digit)) {
printf{"Found digit: %c\n", *pfirst digit);
T else {
printf{"Found no digits.\n");
h
)

Summary

* Processes are programs executing from memory (RAM)
— Each process has its own memory space

* CProgramming
- Use man pages to lookup functions

- Pointers and pointers-to-pointers used as output parameters

* Development Ideas
- Use multiple terminal tabs/windows

- Read documentation first!
— Code a little at a time: write small experiments
* Test unfamiliar syscalls, APIs, or data structures in isolation

— Plan before writing larger chunks

* sleep() puts function to sleep

26-01-19

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22

