Systems Programming:
A Tour Of
Computer Systems

Adapted by Joseph Lunderville
from slides by Dr. Brian Fraser
and course material by Dr. Steve Ko

26-01-19 1

* For a program to run, what is needed?
* How does a computer’s hardware work?

* What does the OS Kernel do?

* How does a program interact with the OS?

26-01-19 2

From Logic Gates To Software

26-01-19 <footer>

OS Stack

* Let's discuss the terminology necessary for the course
and generally for computer systems.

* OS Stack
- Layers of services, each building on lower layer

Applications
Syscall interface (an API)

Kernel

Hardware CMPT 201 deals extensively
with system calls

OS Stack

26-01-19 4

Systems Programming

* Systems programming:
Low-level programming that directly interacts with
hardware or the OS, often using system calls

- Done using systems languages, also called low-level

languages, such as C, C++, Rust, which offer e.g. raw
memory access

* Higher-level or application programming
- Often don’t need a systems language, although
sometimes used for performance reasons

- Choose a language that fits your goals!

26-01-19 5

Hardware Layer

Applications

Kernel

Hardware
26-01-19 6

Components in Computing

* Two fundamental components in computing:
- Computation:

Handled by the CPU
- Data:
Handled by memory (RAM, storage, ...)
* Eg,a+b=>c
- What is the computation?
- What is the data?

26-01-19 7

PC Motherboard

* von Neumann architecture
- Current fundamental model of computer design.

- Fetch data from memory to provide to the CPU for
computation.

DRAM slots processor socket

* Hardware
D aEan s s, : PCI bus slots
components: N

CPU, memory,
and I70 devices. = =k

Various I/O and power
connectors

26-01-19 3

Evolution of CPU: Moore’s Law

40 Years of Microprocessor Trend Data

107 T 7
: ' ' H Transistors
10% | Blg Gap (thousands)
10° F e Single-Thread
10 F - -2tlmeS/Veal‘ Performance 4
(2.5times/5years) |(SPeciNTx 107)
10° | Frequency (MHz)
. "‘, Performance
10° | N < R A Akt o %......d Progress of CPU Typical Power
1 . - .= vy 'v"! ¥ i 0’:&" (Watts)
- i * =
el A « o Ceod ! Number of
A " S I snaee Logical Cores
10 s * - B G0 N LENE RS 4 4 - -
1 L 1 L
1970 1980 1990 2000 2010 2020 year
Year
Pre early 2000: frequency x 2 every 18 months
Post 2005 core count x 2 every 18 months S

Copper/Low-k and Beyond, PhD Thesis, 2018

26-01-19 9

Evolution of Memory

* CPU needs data from memory
~— CPU was getting faster, so memory access had to get faster
too

~ Speed of memory access limited by memory chip speed, and
speed of light!

~ Memory is far away from CPU, and much too slow

RAM B

26-01-19

CPU vs Memory Speed

* “Solve” speed gap between CPU and memory access

* Registers:
- Very small memory inside a CPU; hold data items from memory

- Very close to CPU, so very fast access to data

* Cache:
- Much larger in size than registers, but much smaller than memory

- Quite close (physical distance) to CPU, so faster access times

- Nowadays processors have many caches:
L1 cache ~512KB (smallest, closest, fastest)
L2 cache ~8MB
L3 cache ~32MB (largest, slowest)

26-01-19

Multi-core Processor

* Desktop CPU today
- One processor chip

— Multiple cores

* Many caches,
some shared,
some private

* Some shared
execution units

Ji#ﬁamm.m - A% HESAREl: 5
=r Mem r Controller .
i 1 R

26-01-19 12

Memory Hierarchy

Want the best of all worlds: fast access, large capacity, low
price

Intelligently bring data in from large-slow devices (hard
drives) into small-fast devices (memory, cache)

Fast! CPU Small!
Reqister A
Cache (L1, L2, L3)

Main Memory (RAM)

Size

Solid State Drive

Hard drives v

Big!

<Access Speed>

Slow!

26-01-19

Memory Hierarchy

* Trade-offs
- Cost
Bigger capacity means more expensive

- Distance and Access Speed
Faster means closer to CPU

- Persistence
Ability to retain data through power loss

* Commit generally means making a temporary change permanent (by
analogy, “git commit”): here, copying to persistent storage
- Reliability
How likely is it to fail - not the same as persistence!

* ECC server memory is reliable but not persistent; a cheap SSD may be
persistent but not reliable

26-01-19

CPU Architectures

* Instruction Set Architectures (ISA)
- Defines a set of instructions the CPU can perform

- Compiler translates C programs into machine
instructions

- Example ISAs: x86, ARM, RISC-V (“risk-five")

e 32-hit vs. 64-bit architectures

- For CMPT 201, we care most about 32-bit vs 64-bit
because it determines (natural) register size

26-01-19

Audience Participation - Pointers

* Whatis a pointer in your C program?

a) A memory address.

b) A variable storing a memory address.
c) The data stored in an array.

d) The address of the current instruction.

26-01-19

Audience Participation - Pointers

* Which of the following is true for this code?

char* plLetter;
long long* pCounter;

a) sizeof(pLetter) < sizeof(pCounter)
b) sizeof(pLetter) > sizeof(pCounter)
c) sizeof(pLetter) == sizeof(pCounter)
d) Depends on if the system is 32-bit or 64-bit

26-01-19

32 vs 64 bit Register Size Implications

* 32-bit CPU can do 64-bit computations
- Butit's not as efficient: need multiple operations

* (General) register size = pointer variable size:

32-bit uses 32-bit pointers, 64-bit uses 64-bit pointers
- Computers spend a lot of time doing pointer arithmetic!

* Pointer size determines size of memory address space
- Pointers are memory addresses

* Affects bus/memory channel width (loosely)

pLetter

OxF523 2352 9553 A354

%

26-01-19

OxF10

I 0x000
" OXFFF

Individual byte

pLetter

* Memory made up of bytes (1 byte = 8 bits)
- Each byte has an address

* 32-bit vs 64-bit word size
- The number of bits stored in a CPU's register.

* In a 32-bit system (32-bit word):
- Addresses are 32-bits:
0x0000 0000 to OxFFFF FFFF

- (Datais retrieved from memory 32-bits at a time (4 bytes)
but memory addresses are still byte addresses)

26-01-19

W 0x00C

Audience Participa tion - Pointer Values

OxF10(

Individual byte

" OXFFFF

pLetter

* Which of the following is true?
char ch = ‘A’;
char* pLetter = &ch;
a) pLetter ==
b) pLetter == 0x0000 000A

C) pLetter == OxF100 1230
d) pLetter == OxF100 1234

26-01-19

Audience Participation - Memory

* Which of the following is true?

a) 1,000 = MB, 1,000,000 = KB, 1,000,000,000 = GB
b) 1,000 = GB, 1,000,000 = MB, 1,000,000,000 = KB
c) 1,000 = KB, 1,000,000 = MB, 1,000,000,000 = GB
d) 1,000 = GB, 1,000,000 = KB, 1,000,000,000 = MB

* If memory (RAM) stored just 76 bytes (16 locations),
how many bits do we need in our address?
a) 2-bits
b) 4-bits
c) 8-bits
d) 16-bits

26-01-19

Why 64-bits?

* Why are most computers 64-bit architectures now?
- Has a 64-bit reqgister

- Has a 64-bit pointer

- Allows us to address 25 different bytes in memory
2%4=16,000,000,000 GB = 16 Exabytes (VERY large)

* In a 32-bit architecture, how much memory can the

CPU access?

a) 65,526 bytes

b) 2,147,483,648 bytes

) 4,294,967,296 bytes

d) 18,446,744,073,709,551,616 bytes

26-01-19

Kernel Layer

Applications

Kernel

Hardware

26-01-19

What is the OS?

* Operating System (OS)
— Central software managing the computer's resources

e OSIncludes

- Kernel:
Main part that actively manages resources.

- Supporting tools:
such as GUI, command line;
These are what differentiate Linux distributions (“distros”)

26-01-19

What does a Kernel do?

* Resource management
— many programs want to access the hardware at the same time

- kernel manages (mediates) access

* Program control
- the kernel controls programs (running, stopping, etc.)

* Protection
- the kernel provides protection (isolation) for users and
programs

* E.g., users can't access each other's data

* E.g., programs can't interfere with each other’'s execution

26-01-19

* When does a kernel do some work?
~ Generally, the OS lets other programs run and waits for
something it needs to do

~ The kernels is event driven: it responds to events

* Events can be:
~ Hardware interrupts: a hardware event like a mouse click, or
network packet received

~ Syscalls: a user-space-application generated call to the kernel
e.q., application asking kernel to printf() to the screen.

~ Signals: a software interrupt that announces an event to a
process
e.g., SIGINT = ctrl+c, SIGSEGV = segmentation (page) fault

26-01-19

User Mode vs. Kernel Mode

* Privilege mode of CPU execution
- Kernel Mode runs the OS kernel; allows full privilege and full access to the
hardware.

- Often called "Ring 0"
- User Mode runs applications; cannot execute “privileged instructions”, e.g.
* instructions that allow direct access to hardware

* access to certain regions of memory (kernel memory)

* Which best explains why we need a user mode?
a) Isolation
b) Efficiency
c) Null pointers
d) Abstraction

26-01-19

Root user (aside)

* User/Kernel Mode vs Root User:
~ The “mode” (privilege level of code) is different than the
user-level

~ The root user is still a user, but with full admin
privileges

* Root can run programs and access files that
normal users cannot

* Root user often called a super user

~ Root user cannot (directly) access kernel memory or
protected instructions

26-01-19

26-01-19

functionalities hyman interfaces

layers

user
space
interfaces

aystam calls
and system

electronics

HI char devices

cdev_add

user peripherals

mouse

keybeard camer

‘Zraphics cand audin

system

. interfaces core

System Cal‘l Interface sysiem files
lim'syscalis b
hnnx."mn:sql'
copy_from s

Jproc [sysfe idew

Linux kernel map

processing

processes
Fls Temel'sianal
el

kemal’

sys_fork
avs_viork
sy=_exacve z_vs_/d.nna
i - ¢ Lo ™ .

a gemmcebiy)

o

iy e

[rope—

~ threads

schedule Work oo wricees:

'""'\““/,

hoeads
it
gt g

k!

kel tread

wd

memory

Memory access
sys_brk

memory

DMA

storage

o files & directories
o s access

storage confrollers

SCSI SATA

networking

sockets access

sys_sockeizall
sys_socket

fproc/net/
tepd_seq_show
s oy sk
_sackc_sg shaw
sock_ioct]
address familie

inet_init

network controllers

Ethernet Wi-Fi

29

Important Terms in the Kernel

Linux kernel map

la}f‘ﬂ“:ffsﬂ““ﬂh““ human interfaces system processing memory storage networking
HI char devices v imterfaces core ::L B e . oY Acee= ., files & directories . Sockets access
user i 260 f_mmc..u ll:lerh: sy s I §::;u :;:1:: T: I E‘ SEEES o kel i
spacﬂ A TS M -'p'h‘:ﬁ ke Lﬂ ' s I| |p_._|:fr_:h'ri- | 3:ﬁ i T T ::::-' yE_
- g | ' Bomin vy T) | Y L ""‘-:."' — 5 bl '1]II:II:'IIEI:
interfaces .ot . L. = [vy i | i | ST T T i e it o s
epstam calls u-*:m widen lops oL m:‘ I' | dkeviman I}%_mmcoT e *ﬁ}q:ﬂ iy okl
amd system filas S ™ ¥ Ju— | e g s f L et T‘ e s sV =l
: : i ipsky i swlile I'. ﬁiﬁ “JI&TUU- [P pp— |I "r-.l:l‘;lw b e e : | g w&“ﬂ“ Ak el
M—— o AN irtual memory : —
| '""‘%‘Vh’-\-“’/‘ | Gl -::nt \'x | . .I i b mﬂifu --""?. _\\
* System

- Device drivers: every device needs a device driver to control it
E.g., network card device driver talks to hardware to send/receive
data to/from the physical network.

* Processing o .
- Processes, threads, synchronization, and scheduling later

- Virtual memory, physical memory, and paging later

26-01-19

Important Terms in the Kernel (cont)

Linux kernel map

functionalities hyman interfaces system processing memory storage networking
layers |
user HI char devices v imterfaces core bl P - B mem;ﬁa Lﬁhg&“dci_orhs .. sockets access
space 7N — wE o m L A RS R ST T e
AN s ' - s _Ksinks T L TS B =
. ‘RN forn i o Y - v :::: o : i
interfaces i L) o ot o T e s “L“' e | ks \ | e T E T s I sy
il eu [T | por =t | i’ o, by
e systaue filas e eapacl s fipss e i ;:'L‘fﬂ- .'F“_ m T‘I QLT::P“ 4 L . ™1
ik s el | = - | B e —
. . s mﬁ l‘ iE: -
| A 1T e
* Storage

— File systems and VFS (Virtual File System)

* VFSis an interface - data structures and operations that a file system should
support, e.g. read and write
- Different filesystems, but also services that pretend to be normal files, so
general tools can work seamlessly with them
e.qg., “cat /proc/cpuinfo”

* Networking O
- Sockets, TCP, UDP, and IP

26-01-19

Audience Participation - Kernel

* Which of the following is true?

a) The root user runs programs in kernel mode.

b) Syscalls allow the kernel to execute user-level
applications.

c) A hardware interrupt is generated when dereferencing a
null pointer.

d) User mode prevents applications from executing
privileged instructions.

26-01-19

Applications Layer

Applications

Kernel

Hardware

26-01-19

Lifetime of a Program

Where do

applications [Source Code }
come from?

@ Compilation

[Executable }
(machine code)

@ Memory Loading

[Running Program }

26-01-19

Compilation vs. Interpretation

* Two major ways to run a program:
- Compilation (e.qg., C, C++)

- Interpretation (e.g., Python, Bash)

* Performance vs Portability Trade-off
— Compiled code:

* Source is translated into (usually optimized) machine code
* Performs better: code is directly executed
* Not portable: machine code targets specific ISA

- E.g., can't run x68 executable on ARM machine

- Interpretation may be slower, but same script can run anywhere there
is an interpreter

26-01-19

Compilation vs. Interpretation

* Beware: the devil is in the details
- Someone has to port and compile the interpreter first,
and if you have the source code, can't you just recompile
a compiled program?

- If your interpreted code just makes a few calls into the
compiled runtime, it may perform just as well as any
compiled program...

* E.g. TensorFlow, SciPy

- And what about JIT compilation!

* Don't think too hard, or you will end up in PL research

26-01-19

POSIX

* POSIX (Portable Operating System Interface):
- A standard for (user-level) software portability across different
OSes

- Includes programming interface (file I/O, C standard library,
etc.) and shell utilities

- We see itin C too:
#define POSIX C_SOURCE 200809L

26-01-19

ABI

* An API (Application Programming Interface) is a collection of related functions, often

in a library
— Your code calls or accesses the functions of the API

* An ABI (Application Binary Interface) is a standard for how code interoperates in

general
- Tedious details of passing parameters, how function calls and system calls are made,
how data is organized in memory

- Informally, people also lump syscalls into the OS ABI
* Syscalls are APIs provided directly by the kernel

* Compilers generate executables that follow the ABI for the OS
- E.g., Windows ABI is different from Linux ABI

- Cannot copy a Windows binary (“.exe”) to a Linux machine and run it (and vice versa)

* ...unless you have an ABI translator, like WINE or WSL1

26-01-19

Virtualization

26-01-19 <footer>

Virtualization of Traditional OS Stack

* Virtualization allows part(s) of our OS stack to be

swapped out
- Lets us be much more flexible!

- Software can control the environment;
"Spin up 3 virtual machines to host new databases”

* Hypervisor: software that provides virtualization
- Also called the Virtual Machine Monitor (VMM)

- Hypervisor can run at different levels of our OS stack,
giving different levels of flexibility

26-01-19

* VMM directly atop hardware
- VMM emulates hardware for each VM (Virtual Machine)

- Often used in a data center environment

- Not new: architecture used by IBM since the 1970s

VM #1 VM #2 VM #3
Apps Apps Apps
Kernel Kernel Kernel

VMM
Hardware

26-01-19

* VMM atop the Kernel
- VMM is an application running atop a kernel, along with other
applications (often using special kernel services e.g. KVM)

- The VMM creates/runs/manages VMs

- This is often used in a desktop environment,
e.g., VMWare Workstation, VirtualBox, QEMU

VM #1 VM #2
Apps Apps
Kernel Kernel
VMM Apps
Kernel
Hardware

26-01-19

Containerization

* Containerization
- Containerization creates a container, not a virtual machine.

- Container includes an isolated set of applications and data.
- Uses the same OS kernel as rest of the system

- Uses Linux features for isolation: process isolation (namespaces),
resource control/isolation (cgroups), etc.

- This is the most popular form of virtualization these days, e.q.,
Docker, Podman.

Container #1 Container #2

Apps Apps VM #3
Containerizer Apps
Kernel
Hardware

26-01-19

Audience Participation - Virtualization

26-01-19

Which of the following is a major benefit of
virtualization?

a) Allows user level applications to call the kernel.

b) Allows parts of the OS stack to be swapped out under
software control.

c) Allows the kernel to control different pieces of hardware
when they are connected at runtime.

d) Allows application to run without using an OS kernel.

Theoretical View?

* We are taking a very practical view

* “Virtualization” and “virtual machine” as abstract
concepts are very broad

* E.g., the “Java Virtual Machine” is an example of
“process virtualization”

* The ABI and syscall interface can be understood
together as a kind of VM

* For the purposes of this course, we are ignoring this
broader theoretical view, even though it is valid

26-01-19

* OS Stack is the layers of service
- Hardware, Kernel, Application

* Memory hierarchy
- allows programs to access large memories quickly

* Pointers hold addresses,
- 32 vs 64 bits limit how much memory we can access

* Kernel mode gives OS kernel access to all resources
- User mode limits what an application can do

* Applications use the OS’s ABI to use services

* Virtualization allows parts of the OS stack to be swapped out under
software control

26-01-19

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 47

