
26-01-19 1

Systems Programming:
A Tour Of

Computer Systems

Adapted by Joseph Lunderville
from slides by Dr. Brian Fraser

and course material by Dr. Steve Ko

26-01-19 2

Topics

● For a program to run, what is needed?
● How does a computer’s hardware work?
● What does the OS Kernel do?
● How does a program interact with the OS?

<footer>26-01-19 3

From Logic Gates To Software

26-01-19 4

OS Stack

● Let's discuss the terminology necessary for the course
and generally for computer systems.

● OS Stack
– Layers of services, each building on lower layer

Applications

Kernel

Hardware

Syscall interface (an API)

OS Stack

CMPT 201 deals extensively
with system calls

26-01-19 5

Systems Programming

● Systems programming:
Low-level programming that directly interacts with
hardware or the OS, often using system calls

– Done using systems languages, also called low-level
languages, such as C, C++, Rust, which offer e.g. raw
memory access

● Higher-level or application programming
– Often don’t need a systems language, although

sometimes used for performance reasons
– Choose a language that fits your goals!

26-01-19 6

Hardware LayerHardware Layer
Applications

Kernel

Hardware

26-01-19 7

Components in Computing

● Two fundamental components in computing:
– Computation:

Handled by the CPU
– Data:

Handled by memory (RAM, storage, ...)
● E.g., a + b => c

– What is the computation?
– What is the data?

26-01-19 8

PC Motherboard

● von Neumann architecture
– Current fundamental model of computer design.
– Fetch data from memory to provide to the CPU for

computation.
● Hardware

components:

CPU, memory,
and I/O devices.

26-01-19 9

Evolution of CPU: Moore’s Law

Reference: Ahmet Ceyhan, Interconnects for
Future Technology Generations: CMOS with
Copper/Low-κ and Beyond, PhD Thesis, 2018

Pre early 2000: frequency x 2 every 18 months
Post 2005: core count x 2 every 18 months

26-01-19 10

Evolution of Memory
● CPU needs data from memory

– CPU was getting faster, so memory access had to get faster
too

– Speed of memory access limited by memory chip speed, and
speed of light!

– Memory is far away from CPU, and much too slow

CPU

RAM

26-01-19 11

CPU vs Memory Speed

● “Solve” speed gap between CPU and memory access
● Registers:

– Very small memory inside a CPU; hold data items from memory
– Very close to CPU, so very fast access to data

● Cache:
– Much larger in size than registers, but much smaller than memory
– Quite close (physical distance) to CPU, so faster access times
– Nowadays processors have many caches:

L1 cache ~512KB (smallest, closest, fastest)
L2 cache ~8MB
L3 cache ~32MB (largest, slowest)

26-01-19 12

Multi-core Processor

● Desktop CPU today
– One processor chip
– Multiple cores

● Many caches,
some shared,
some private

● Some shared
execution units

26-01-19 13

Memory Hierarchy
● Want the best of all worlds: fast access, large capacity, low

price
● Intelligently bring data in from large-slow devices (hard

drives) into small-fast devices (memory, cache)
CPU

Register
Cache (L1, L2, L3)

Main Memory (RAM)

Solid State Drive

Hard drives

Tape

Fast!

Slow!

Small!

Big!

Ac
ce

ss
 S

pe
ed

Si
ze

26-01-19 14

Memory Hierarchy

● Trade-offs
– Cost

Bigger capacity means more expensive
– Distance and Access Speed

Faster means closer to CPU
– Persistence

Ability to retain data through power loss
● Commit generally means making a temporary change permanent (by

analogy, “git commit”): here, copying to persistent storage
– Reliability

How likely is it to fail – not the same as persistence!
● ECC server memory is reliable but not persistent; a cheap SSD may be

persistent but not reliable

26-01-19 15

CPU Architectures

● Instruction Set Architectures (ISA)
– Defines a set of instructions the CPU can perform
– Compiler translates C programs into machine

instructions
– Example ISAs: x86, ARM, RISC-V (“risk-five”)

● 32-bit vs. 64-bit architectures
– For CMPT 201, we care most about 32-bit vs 64-bit

because it determines (natural) register size

26-01-19 16

Audience Participation - Pointers

a) A memory address.
b) A variable storing a memory address.
c) The data stored in an array.
d) The address of the current instruction.

● What is a pointer in your C program?

26-01-19 17

Audience Participation - Pointers

a) sizeof(pLetter) < sizeof(pCounter)
b) sizeof(pLetter) > sizeof(pCounter)
c) sizeof(pLetter) == sizeof(pCounter)
d) Depends on if the system is 32-bit or 64-bit

● Which of the following is true for this code?

char* pLetter;
long long* pCounter;

26-01-19 18

32 vs 64 bit Register Size Implications

● 32-bit CPU can do 64-bit computations
– But it’s not as efficient: need multiple operations

● (General) register size = pointer variable size:
32-bit uses 32-bit pointers, 64-bit uses 64-bit pointers

– Computers spend a lot of time doing pointer arithmetic!
● Pointer size determines size of memory address space

– Pointers are memory addresses
● Affects bus/memory channel width (loosely)

0xF523 2352 9553 A354pLetter Data

26-01-19 19

Memory

● Memory made up of bytes (1 byte = 8 bits)
– Each byte has an address

● 32-bit vs 64-bit word size
– The number of bits stored in a CPU’s register.

● In a 32-bit system (32-bit word):
– Addresses are 32-bits:

0x0000 0000 to 0xFFFF FFFF
– (Data is retrieved from memory 32-bits at a time (4 bytes)

but memory addresses are still byte addresses)

9

Individual bytes

0x
00

00
 0

00
0

0x
FF

FF
 F

FF
F

... 0x
F1

00
 1

23
4

...pLetter

26-01-19 20

0x
FF

FF
 F

FF
FAudience Participa tion - Pointer Values

A

Individual bytes

0x
00

00
 0

00
0

... 0x
F1

00
 1

23
4

...pLetter

● Which of the following is true?
char ch = ‘A’;
char* pLetter = &ch;

a) pLetter == ‘A’
b) pLetter == 0x0000 000A
c) pLetter == 0xF100 1230
d) pLetter == 0xF100 1234

26-01-19 21

Audience Participation - Memory

a) 1,000 = MB, 1,000,000 = KB, 1,000,000,000 = GB
b) 1,000 = GB, 1,000,000 = MB, 1,000,000,000 = KB
c) 1,000 = KB, 1,000,000 = MB, 1,000,000,000 = GB
d) 1,000 = GB, 1,000,000 = KB, 1,000,000,000 = MB

a) 2-bits
b) 4-bits
c) 8-bits
d) 16-bits

● Which of the following is true?

● If memory (RAM) stored just 16 bytes (16 locations),
how many bits do we need in our address?

26-01-19 22

Why 64-bits?

● Why are most computers 64-bit architectures now?
– Has a 64-bit register
– Has a 64-bit pointer
– Allows us to address 264 different bytes in memory

264= 16,000,000,000 GB = 16 Exabytes (VERY large)
● In a 32-bit architecture, how much memory can the

CPU access?
a) 65,526 bytes
b) 2,147,483,648 bytes
c) 4,294,967,296 bytes
d) 18,446,744,073,709,551,616 bytes

26-01-19 23

Kernel LayerKernel Layer
Applications

Kernel

Hardware

26-01-19 24

What is the OS?
● Operating System (OS)

– Central software managing the computer's resources
● OS Includes

– Kernel:
Main part that actively manages resources.

– Supporting tools:
such as GUI, command line;
These are what differentiate Linux distributions (“distros”)

26-01-19 25

What does a Kernel do?

● Resource management
– many programs want to access the hardware at the same time
– kernel manages (mediates) access

● Program control
– the kernel controls programs (running, stopping, etc.)

● Protection
– the kernel provides protection (isolation) for users and

programs
● E.g., users can’t access each other’s data
● E.g., programs can’t interfere with each other’s execution

26-01-19 26

Event-Driven

● When does a kernel do some work?
– Generally, the OS lets other programs run and waits for

something it needs to do
– The kernels is event driven: it responds to events

● Events can be:
– Hardware interrupts: a hardware event like a mouse click, or

network packet received
– Syscalls: a user-space-application generated call to the kernel

e.g., application asking kernel to printf() to the screen.
– Signals: a software interrupt that announces an event to a

process
e.g., SIGINT = ctrl+c, SIGSEGV = segmentation (page) fault

26-01-19 27

User Mode vs. Kernel Mode

● Privilege mode of CPU execution
– Kernel Mode runs the OS kernel; allows full privilege and full access to the

hardware.
– Often called "Ring 0"
– User Mode runs applications; cannot execute “privileged instructions”, e.g.

● instructions that allow direct access to hardware
● access to certain regions of memory (kernel memory)

● Which best explains why we need a user mode?
a) Isolation
b) Efficiency
c) Null pointers
d) Abstraction

26-01-19 28

Root user (aside)

● User/Kernel Mode vs Root User:
– The “mode” (privilege level of code) is different than the

user-level
– The root user is still a user, but with full admin

privileges
● Root can run programs and access files that

normal users cannot
● Root user often called a super user

– Root user cannot (directly) access kernel memory or
protected instructions

26-01-19 29https://makelinux.github.io/kernel/map/

26-01-19 30

Important Terms in the Kernel

● System
– Device drivers: every device needs a device driver to control it

E.g., network card device driver talks to hardware to send/receive
data to/from the physical network.

● Processing
– Processes, threads, synchronization, and scheduling

● Memory
– Virtual memory, physical memory, and paging

Covered
later

Covered
later

26-01-19 31

Important Terms in the Kernel (cont)

● Storage
– File systems and VFS (Virtual File System)

● VFS is an interface – data structures and operations that a file system should
support, e.g. read and write

– Different filesystems, but also services that pretend to be normal files, so
general tools can work seamlessly with them
e.g., “cat /proc/cpuinfo”

● Networking
– Sockets, TCP, UDP, and IP

Covered
later

26-01-19 32

Audience Participation - Kernel

● Which of the following is true?

a) The root user runs programs in kernel mode.
b) Syscalls allow the kernel to execute user-level

applications.
c) A hardware interrupt is generated when dereferencing a

null pointer.
d) User mode prevents applications from executing

privileged instructions.

26-01-19 33

Applications LayerApplications Layer
Applications

Kernel

Hardware

26-01-19 34

Lifetime of a Program

Where do
applications
come from?

Executable
(machine code)

Running Program

Source Code

Compilation

Memory Loading

(briefly)

26-01-19 35

Compilation vs. Interpretation

● Two major ways to run a program:
– Compilation (e.g., C, C++)
– Interpretation (e.g., Python, Bash)

● Performance vs Portability Trade-off
– Compiled code:

● Source is translated into (usually optimized) machine code
● Performs better: code is directly executed
● Not portable: machine code targets specific ISA

– E.g., can't run x68 executable on ARM machine
– Interpretation may be slower, but same script can run anywhere there

is an interpreter

(briefly)

26-01-19 36

Compilation vs. Interpretation

● Beware: the devil is in the details
– Someone has to port and compile the interpreter first,

and if you have the source code, can’t you just recompile
a compiled program?

– If your interpreted code just makes a few calls into the
compiled runtime, it may perform just as well as any
compiled program...

● E.g. TensorFlow, SciPy
– And what about JIT compilation!

● Don’t think too hard, or you will end up in PL research

(briefly)

26-01-19 37

POSIX

● POSIX (Portable Operating System Interface):
– A standard for (user-level) software portability across different

OSes
– Includes programming interface (file I/O, C standard library,

etc.) and shell utilities
– We see it in C too:
#define _POSIX_C_SOURCE 200809L

Image: https://www.linkedin.com/pulse/understanding-posix-
standard-bridges-operating-systems-logzeta-1bl4f/

(briefly)

26-01-19 38

ABI

● An API (Application Programming Interface) is a collection of related functions, often
in a library

– Your code calls or accesses the functions of the API

● An ABI (Application Binary Interface) is a standard for how code interoperates in
general

– Tedious details of passing parameters, how function calls and system calls are made,
how data is organized in memory

– Informally, people also lump syscalls into the OS ABI
● Syscalls are APIs provided directly by the kernel

● Compilers generate executables that follow the ABI for the OS
– E.g., Windows ABI is different from Linux ABI
– Cannot copy a Windows binary (“.exe”) to a Linux machine and run it (and vice versa)

● ...unless you have an ABI translator, like WINE or WSL1

<footer>26-01-19 39

Virtualization

26-01-19 40

Virtualization of Traditional OS Stack

● Virtualization allows part(s) of our OS stack to be
swapped out

– Lets us be much more flexible!
– Software can control the environment:

”Spin up 3 virtual machines to host new databases”
● Hypervisor: software that provides virtualization

– Also called the Virtual Machine Monitor (VMM)
– Hypervisor can run at different levels of our OS stack,

giving different levels of flexibility

26-01-19 41

On Hardware

● VMM directly atop hardware
– VMM emulates hardware for each VM (Virtual Machine)
– Often used in a data center environment
– Not new: architecture used by IBM since the 1970s

Hardware
VMM

Kernel
Apps

VM #1 VM #2 VM #3

Kernel
Apps

Kernel
Apps

26-01-19 42

On Kernel

● VMM atop the Kernel
– VMM is an application running atop a kernel, along with other

applications (often using special kernel services e.g. KVM)
– The VMM creates/runs/manages VMs
– This is often used in a desktop environment,

e.g., VMWare Workstation, VirtualBox, QEMU

Hardware

VMM
Kernel
Apps

VM #1 VM #2

Kernel
Apps

Kernel
Apps

26-01-19 43

Containerization
● Containerization

– Containerization creates a container, not a virtual machine.
– Container includes an isolated set of applications and data.
– Uses the same OS kernel as rest of the system
– Uses Linux features for isolation: process isolation (namespaces),

resource control/isolation (cgroups), etc.
– This is the most popular form of virtualization these days, e.g.,

Docker, Podman.

Hardware

Containerizer
Apps

Container #1 Container #2
VM #3Apps

Kernel
Apps

26-01-19 44

Audience Participation - Virtualization

● Which of the following is a major benefit of
virtualization?

a) Allows user level applications to call the kernel.
b) Allows parts of the OS stack to be swapped out under

software control.
c) Allows the kernel to control different pieces of hardware

when they are connected at runtime.
d) Allows application to run without using an OS kernel.

26-01-19 45

Theoretical View?

● We are taking a very practical view
● “Virtualization” and “virtual machine” as abstract

concepts are very broad
● E.g., the “Java Virtual Machine” is an example of

“process virtualization”
● The ABI and syscall interface can be understood

together as a kind of VM
● For the purposes of this course, we are ignoring this

broader theoretical view, even though it is valid

26-01-19 47

Summary

● OS Stack is the layers of service
– Hardware, Kernel, Application

● Memory hierarchy
– allows programs to access large memories quickly

● Pointers hold addresses,
– 32 vs 64 bits limit how much memory we can access

● Kernel mode gives OS kernel access to all resources
– User mode limits what an application can do

● Applications use the OS’s ABI to use services
● Virtualization allows parts of the OS stack to be swapped out under

software control

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 47

