Welcome to CMPT 201
Systems Programming

26-01-19 Adapted from slides © Dr. B. Fraser

1)Introductions
2)What is Systems Programming?
3)Course overview

4)Demo of coding environment

26-01-19 2

Who's Joe Lunderville?

* Joe or Joseph, he/they
* I'm a sessional instructor!
* Grad student, working in quantum computing

* ButI have /ots of professional experience
- 20ish years of C++, C#, Python, BASH, JS,
assembler...

- Eclectic career: web, info systems, mobile, build
engineering, media, embedded, now research...?

* I don't like doing things in order

26-01-19 3

We Are Still Sorting Out Logistics

* The course website is still showing information
from Fall!

* This is mostly accurate, because I'm teaching the
same material...

* But the dates are all wrong. They are wrong in
CourSys as well.

* They should be fixed before the next lecture.

26-01-19 4

What is Systems Programming?

26-01-19 5

Systems Programming

* Systems Programming
- Low-level programming that directly interacts
with hardware or the OS.

* Languages Used
- Need ability to manage raw memory access and
other low level tasks.

- Ex; C, C++, Rust

- Python and Java don't allow you to do that.

26-01-19 6

Systems Programming Perspectives...

* The preceding explanation is pretty... fine
- But I think we kind of beg the question: what is
“low level"?

* I have slightly different perspective:
- The parts of software that are most common

* And another:
- What you need to explain program behaviours
that aren’t part of the high-level abstraction

26-01-19 7

Systems Programming

* We will be working with a lot of simple data structures
and simple algorithms, and focusing on the interaction
with the OS

- We will also see what it looks like when they fail

- Just under the surface of any significant application
or language runtime

* Useful even if you don’t write this code yourself
- It will help you understand what's possible when
designing at a higher level

- It will help you stay oriented when things fail

26-01-19 8

Course Overview

* Goal
- Be a confident developer with low-level OS services.

- Course is very applied

* May spend hours solving build issues, and debugging
complex behaviour.

* Course Components

- 0 « D Correct
Understand Write low-level
user-level services programs using —— Efficient
of the OS OS services
N\ A / Reliable

26-01-19 9

What to expe

60%

50%

40%

30%

% Students

20%

10%

0%

Completion Time - Short Assignments

Spring 2025

—— A0 Hrs

Al Hrs

A7 Value

A6 Value

A5 Value

A4 Value

A3 Value

A2 Value

A1l Value

A0 Value

0

How Valuable were Short Assignments?
Spring 2025

£

10%

Hours spent completing the assignment

A2 Hrs

A3 Hrs

A5 Hrs

20%

Ad Hrs

30% 40%

AB Hrs

50%
% Stdunets

60% 70% 80% 90% 100%

HNotatall mNotso MSomewhat BVery ™ Extremely

A7 Hrs

Scale 0 - 50

10

Completion Time - Long Assignments

60%

50%

40%

% Students
w
(=]
x

20%

10%

0%

Spring 2025

10

20

Al12Value

AllValue

A10 Value

=

10%

20%

30%

M Not at all

40%

Spring 2025

50%

How Valuable were Long Assignments?

60% 70% 80% 90% 100%

% Students

E Notso M Somewhat

HVery M Extremely

ya

30

— A8 Hrs

40

50

60

Hours spent completing the assignment

A9 Hrs

——A10Hrs

Al1Hrs

70

Al2Hrs

80

920

100

Scale 0 - 100

What to expect

* Course is polarizing
Really love it! Really hate it!

The assignments really
helped solidify my
understanding of

concepts

This course feels The homework is
like 6 credits completely

..teaching is ve
9 Y worth. unreasonable.

engaging and
informative

...assignments are just soo
\ much tougher going beyond

(In long assignments,) you're given a spec, the lecture material

some general pointers and guidelines, and

then basically told figure it out. (These) were, [Assignments] are a full time job th}
hard, yes, but super gratifying to do. you cannot complete. They can take

up to 40 hours easily then if you do

\ / not figure out one seg fault you just

spent 40 hours in your week to get a

N 0 on a 10% assignment. -

* Linux command-line interface (CLI), shell scripting, and basic
development tools

* Processes and threads

* Memory management

* Virtual memory

* Scheduling

* Synchronization

* Storage and file system abstractions

* Communication abstractions such as IPC, sockets, and RPC

* Basics of OS security and cryptographic functions.

26-01-19 13

What you know

* From prereqs you know
- Solid programming skills to write functions, loops, if, arrays,
pointer, input/output.

- Solid debugging skills to recognize defects and methodically track
down errors.

- Solid understanding of C or C++ programming.
* Passing prereq does not make this an easy course
- Lower grades in prereq?
or less familiar with above skills?

Then expect to spend a lot of time becoming excellent this
semester.

- CMPT201 does not teach C and uses Linux terminal

26-01-19 14

* Course is opinionated about good coding.
- Focuses on Linux command-line interface (CLI)

- Uses C for low-level programming
(we don't teach Q).

- These are frequently missing skill in new grads,
so we'll learn it well here!

* You may not love this approach to coding,
but it will expand your skills!

26-01-19 15

* Highly recommended book
The Linux Programming Interface:

. _ THE LINUX
ﬁ;_;]r;ubxoirlld UNIX System Programming PROGRAMMING
, INTERFACE

Michael Kerrisk, 2010

& Linu ang LIMES Syslrm F‘rogtan'. mi ng lzndhook

MICHAEL KERRISK

* Why Recommended?
— Arguably the best book on systems
programming using Linux.

- Almost required: course draws on it

- If struggling, then very highly
recommended to read along during
semester!

26-01-19 16

Admin Review

* Assessment
- Midterm: 15%

- Final: 15%
- Programming assignments: 66%
* 8short (2% each), 5 long (10% each)
- Labs: 4%
- Grade breakpoints (“% for B+?”) may be non-standard

¢ Students must attain an overall passing grade on the weighted average of exams (quizzes/
midterms/final) in the course in order to obtain a clear pass (C- or better).

* Academic Honesty
- Tam passionate about proving
who did their own work.

- Corollaries:
 I'll give you credit for the work you do.

* I'll catch those who don't do their own work.

26-01-19 17

Policies

* Late Policy
* Regrading Policy

26-01-19 18

Policies

* Al Tools Policy
- When in doubt, don’t use them

26-01-19 19

Roles

26-01-19

We play many roles
- I'm also a student - I could be in your class

- Here and now I'm your instructor

My personal take: I recommend seeing the role you play as
something that will change

- I've been in many professional roles: junior, team lead,
contractor - and then I came back here as an undergrad,; it's
not humbling, it's just a role I chose

- Don’t make it your identity
- But take it seriously: play that role effectively

- Ifit's the wrong role, find a different one

20

Roles: Teaching Staff

* Iam here to facilitate your learning, as are the TAs

* We should be reasonably available and

accommodating
~ The size of the class puts limits on this

~ So does the need for consistency

* Part of our role is to evaluate you
~ SFU has an external role: it promises, through your
degree, that you have certain skills

~ I promise to SFU that I have evaluated you when I
submit grades

26-01-19 21

Roles: Students

* As students, you have a specific role as well

* When you help each other learn and are
respectful, everybody learns better

* When everyone participates honestly, the degree
you get is more credible and more valuable

* It's not just your right, it is your responsibility to
ask for help

26-01-19 22

Roles: Students

* Participating honestly means not copying answers
~ For the labs we will be explicitly encouraging you to
work together

~ On assignments, talk concepts but don’t reuse code
snippets
* This also means not using Al tools
~ In principle I don't have a problem with them

~ But that's not the skill we're teaching here: to learn that
skill, you have to make the prompts

~ If you feed my assignment description and my test suite
into the model, you're just copying my work

26-01-19 23

Roles: Students

* When communicating with me and with TAs,

include context
- Class number in the subject

- GitHub ID if it's about a programming
assignment

- Your name or student number if you're using e.q.
a Discord or Piazza account

26-01-19 24

Demo

* VM for doing Assignments

(Like take-home tests)
- Launch the VM

- Explain ./start_here.sh
- Explain record
- Neovim snapshots

26-01-19 25

* Course is hands-on
~ Expect to learn systems programming skills

~ Expect to spend quite a bit of time fumbling around

* Learning to problem-solve and debug
effectively in a challenging environment is part
of this

~ Decide now if you are in for learning

* Assignments
— 2 short every week for first 4 weeks

~ 1 long every 2(ish) weeks after that

26-01-19 26

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26

