Welcome to CMPT 201
Systems Programming

26-01-19 Adapted from slides © Dr. B. Fraser



1)Introductions
2)What is Systems Programming?
3)Course overview

4)Demo of coding environment
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Who's Joe Lunderville?

* Joe or Joseph, he/they
* I'm a sessional instructor!
* Grad student, working in quantum computing

* ButI have /ots of professional experience
- 20ish years of C++, C#, Python, BASH, JS,
assembler...

- Eclectic career: web, info systems, mobile, build
engineering, media, embedded, now research...?

* I don't like doing things in order
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We Are Still Sorting Out Logistics

* The course website is still showing information
from Fall!

* This is mostly accurate, because I'm teaching the
same material...

* But the dates are all wrong. They are wrong in
CourSys as well.

* They should be fixed before the next lecture.
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What is Systems Programming?
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Systems Programming

* Systems Programming
- Low-level programming that directly interacts
with hardware or the OS.

* Languages Used
- Need ability to manage raw memory access and
other low level tasks.

- Ex; C, C++, Rust

- Python and Java don't allow you to do that.
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Systems Programming Perspectives...

* The preceding explanation is pretty... fine
- But I think we kind of beg the question: what is
“low level"?

* I have slightly different perspective:
- The parts of software that are most common

* And another:
- What you need to explain program behaviours
that aren’t part of the high-level abstraction
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Systems Programming

* We will be working with a lot of simple data structures
and simple algorithms, and focusing on the interaction
with the OS

- We will also see what it looks like when they fail

- Just under the surface of any significant application
or language runtime

* Useful even if you don’t write this code yourself
- It will help you understand what's possible when
designing at a higher level

- It will help you stay oriented when things fail
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Course Overview

* Goal
- Be a confident developer with low-level OS services.

- Course is very applied

* May spend hours solving build issues, and debugging
complex behaviour.

* Course Components

- 0 « D Correct
Understand Write low-level
user-level services programs using ——  Efficient
of the OS OS services
N\ A / Reliable
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What to expe
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Completion Time - Long Assignments
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What to expect

* Course is polarizing
Really love it! Really hate it!

The assignments really
helped solidify my
understanding of

concepts

This course feels The homework is
like 6 credits completely

..teaching is ve
9 Y worth. unreasonable.

engaging and
informative

...assignments are just soo
\ much tougher going beyond

(In long assignments,) you're given a spec, the lecture material

some general pointers and guidelines, and

then basically told figure it out. (These) were, [Assignments] are a full time job th}
hard, yes, but super gratifying to do. you cannot complete. They can take

up to 40 hours easily then if you do

\ / not figure out one seg fault you just

spent 40 hours in your week to get a

N 0 on a 10% assignment. -




* Linux command-line interface (CLI), shell scripting, and basic
development tools

* Processes and threads

* Memory management

* Virtual memory

* Scheduling

* Synchronization

* Storage and file system abstractions

* Communication abstractions such as IPC, sockets, and RPC

* Basics of OS security and cryptographic functions.
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What you know

* From prereqs you know
- Solid programming skills to write functions, loops, if, arrays,
pointer, input/output.

- Solid debugging skills to recognize defects and methodically track
down errors.

- Solid understanding of C or C++ programming.
* Passing prereq does not make this an easy course
- Lower grades in prereq?
or less familiar with above skills?

Then expect to spend a lot of time becoming excellent this
semester.

- CMPT201 does not teach C and uses Linux terminal
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* Course is opinionated about good coding.
- Focuses on Linux command-line interface (CLI)

- Uses C for low-level programming
(we don't teach Q).

- These are frequently missing skill in new grads,
so we'll learn it well here!

* You may not love this approach to coding,
but it will expand your skills!
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* Highly recommended book
The Linux Programming Interface:

. _ THE LINUX
ﬁ;_;]r;ubxoirlld UNIX System Programming PROGRAMMING
, INTERFACE

Michael Kerrisk, 2010

& Linu ang LIMES Syslrm F‘rogtan'. mi ng lzndhook

MICHAEL KERRISK

* Why Recommended?
— Arguably the best book on systems
programming using Linux.

- Almost required: course draws on it

- If struggling, then very highly
recommended to read along during
semester!
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Admin Review

* Assessment
- Midterm: 15%

- Final: 15%
- Programming assignments: 66%
* 8short (2% each), 5 long (10% each)
- Labs: 4%
- Grade breakpoints (“% for B+?”) may be non-standard

¢ Students must attain an overall passing grade on the weighted average of exams (quizzes/
midterms/final) in the course in order to obtain a clear pass (C- or better).

* Academic Honesty
- Tam passionate about proving
who did their own work.

- Corollaries:
 I'll give you credit for the work you do.

* I'll catch those who don't do their own work.
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Policies

* Late Policy
* Regrading Policy
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Policies

* Al Tools Policy
- When in doubt, don’t use them
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Roles

26-01-19

We play many roles
- I'm also a student - I could be in your class

- Here and now I'm your instructor

My personal take: I recommend seeing the role you play as
something that will change

- I've been in many professional roles: junior, team lead,
contractor - and then I came back here as an undergrad,; it's
not humbling, it's just a role I chose

- Don’t make it your identity
- But take it seriously: play that role effectively

- Ifit's the wrong role, find a different one
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Roles: Teaching Staff

* Iam here to facilitate your learning, as are the TAs

* We should be reasonably available and

accommodating
~ The size of the class puts limits on this

~ So does the need for consistency

* Part of our role is to evaluate you
~ SFU has an external role: it promises, through your
degree, that you have certain skills

~ I promise to SFU that I have evaluated you when I
submit grades
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Roles: Students

* As students, you have a specific role as well

* When you help each other learn and are
respectful, everybody learns better

* When everyone participates honestly, the degree
you get is more credible and more valuable

* It's not just your right, it is your responsibility to
ask for help
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Roles: Students

* Participating honestly means not copying answers
~ For the labs we will be explicitly encouraging you to
work together

~ On assignments, talk concepts but don’t reuse code
snippets
* This also means not using Al tools
~ In principle I don't have a problem with them

~ But that's not the skill we're teaching here: to learn that
skill, you have to make the prompts

~ If you feed my assignment description and my test suite
into the model, you're just copying my work
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Roles: Students

* When communicating with me and with TAs,

include context
- Class number in the subject

- GitHub ID if it's about a programming
assignment

- Your name or student number if you're using e.q.
a Discord or Piazza account

26-01-19 24




Demo

* VM for doing Assignments

(Like take-home tests)
- Launch the VM

- Explain ./start_here.sh
- Explain record
- Neovim snapshots
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* Course is hands-on
~ Expect to learn systems programming skills

~ Expect to spend quite a bit of time fumbling around

* Learning to problem-solve and debug
effectively in a challenging environment is part
of this

~ Decide now if you are in for learning

* Assignments
— 2 short every week for first 4 weeks

~ 1 long every 2(ish) weeks after that
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