Scheduling

Topics

- How does the OS decide which task to run next?
 (Why do we care with RT systems?)
- 2) What is priority inversion?(Why do we care?)

Scheduling

Task Priority

- Each task has a priority
 - High priority: should be run sooner (RT tasks)
 - Normal/Low priority: run later, and preemptible
- Linux Priorities (PRI#)
 - In user level we see PRI# 0:139
 - Non Real-time: 100-139
 - Real-time: 0-99
 - "Lower" PRI# means higher priority
 - Often called..
 The nicer you are, the higher your PRI#
- Ex: Run at a higher priority (bbg)\$ nice -n -10 ./lightSampler

Scheduling

- OS decides which of the ready tasks...
- Linux normally uses: Completely Fair Scheduler (CFS)
 - Aims to maximize CPU usage and minimize delays for interactive programs
 - Next scheduled task:

...

- Max length time = The time the process has waited to run
 Total number of processes
- Processes which sleep a lot get scheduled often
- Used for SCHED_NORMAL priority
- Why not great for RT?

Linux "RT" Task Scheduling

- RR: Round Robin
 - Starting with the highest priority level, ...
 - Then, move to the next lower priority.
- FIFO: First In, First Out
 - .. run till completion
 - Great for highest priority, time-critical tasks
- What could be a problem with FIFO?

Linux Scheduling

- Linux Scheduler Sequence
 - Each time Linux wants to schedule a task, it does:
 - First do all FIFO tasks
 - Then do all RR tasks
 - Then do all CFS tasks
- Challenge for system designer:

to allow for the correct operation of the device

Earliest Deadline First

- Linux also supports Earliest Deadline First
 - Tasks declare...
- Scheduler tests new task for schedulability:
 - Given current set of tasks and their deadlines, can the OS..
 - Yes?
 - Accepts it (guaranteeing it will have the CPU budget to meet its deadline)
 - No? Rejects it
- Tasks are scheduled based on EDF

EDF vs FIFO/RR

other tasks

RR and FIFO

Developer must set a task priority to meet deadlines

- ..

EDF

a task which misses its deadline does not take down

Priority Inversion

How Priority Works

The simple case of preemption with priority

Priority with Mutexes

What if processes of different priorities share a mutex?

What could go wrong?

 Mutex held between tasks of two priorities with other tasks preempting low priority task..

Solution: Priority Inheritance

 When a higher priority process blocks on a mutex held by a lower priority process, then..

Summary

- OS Schedules tasks
 - Round Robin
 - First-in First-out
 - Completely Fair Schedule
 - Earliest Deadline First
- Priority Inversion
 - When a high priority task is waiting on an resource held by a low priority task, and that low priority task is preempted by a mid priority task.
- Priority Inheritance
 - When holding a mutex, a task's priority is promoted to the priority of other tasks waiting on that mutex.