
24-04-02 1

Real-Time & Linux

Sources:
“Real-time Systems” by (Jane Liu, 2000) Ch 2
”HOWTO build a simple RT application” by the Linux Foundation

https://wiki.linuxfoundation.org/realtime/documentation/howto/applications/application_base

© Dr. B. FraserSlides 17CMPT 433

24-04-02 2

Topics

1) What is Hard vs Soft real-time?

2) How can we know when a task will run?
(Deterministic Latency)

24-04-02 3

Hard vs Soft Real-Time

24-04-02 4

Timing Constraints

● Job
– ..

– Example: calculating the statistics over hundreds of light-
intensity samples each second.

● Real-Time (RT) systems have jobs that must be started and
completed by certain times.

● Job's timing constraint: its release time and relative deadline

Time

Release Time

Response Time

Relative Deadline

Job Executing

Latency

24-04-02 5

Common Definitions

● Common definitions
– Hard RT

missing a timing deadline is considered
a fatal flaw in the system.

● Ex: collision avoidance system on a train yields a crash.

– Soft RT
missing a timing deadline yields
degraded performance.

● Ex: video playback yields a stutter

● Poor definition because it’s subjective:
it depends on defining how fatal "late" is.

24-04-02 6

Our Definitions of RT

● Hard Realtime
– User requires..

– "Guaranteed Services"
Mathematical/logical proof or exhaustive simulation
required

– Hard real-time is about..

● Soft Realtime
– User only requires..

(statistical analysis)

– "Best effort Services"
Ex: Average # missed deadline < 2 per minute.

– Soft real-time is about..

24-04-02 7

Goals of RT

● What is latency?
– Latency is..

– We often care about critical tasks such as responding to high-
priority interrupts (interrupt latency)

● Goal
– low and deterministic latency

● Example:
– Battery Management System:

over-current detection triggers bank shutdown

– Effect of non-deterministic latency in this example

– [Draw a picture]

24-04-02 8

Hard RT: Scheduling Guarantees

● Example
– Airplane flight control needs reliable timing to:

● Read sensors

● Compute “control-laws” to generate responses

● Send responses to actuators

● OS guarantees
– ..

● How?
– Each new job comes with a duration and a deadline

– System only allows new job if it can guarantee it can
complete it by the deadline

24-04-02 9

Deterministic Latency

24-04-02 10

Deterministic Latency

Deterministic low latency RT requires:

● ..
– support low-latency response

– requires preemptible kernel with short critical
sections

● ..
– Avoid non-deterministic latencies on RT path

– Use OS features for memory & scheduling

24-04-02 11

OS: Linux RT Patch

● Linux RT patch: PREEMPT_RT
– Goal is to "minimize the amount of kernel code that is

non-preemptible." (https://lwn.net/Articles/146861/)

● Patch has been cleaning up Linux kernel for years
– Many of its features are on the "mainline" and have

improved Linux for general uses (ex: better audio)

– RT Patch makes kernel interruptible almost everywhere

● [DRAW]: syscall & context switch process
1) App executes sys-call

2) Kernel provides services; returns to app

Any time: Kernel timer invokes context switch

24-04-02 12

Application Req for Deterministic Latency

● Step 1:
– OS supports low latency

(just saw that!)

● Step 2:
– RT application takes steps to prevent

nondeterministic latencies

– Example sources of non-deterministic delays

● memory faults

● scheduling delays and context switches

● priority inversion (later)

https://wiki.linuxfoundation.org/realtime/documentation/howto/applications/application_base

24-04-02 13

App 1) Memory Locking

● Swap Memory
– A computer's memory (RAM) is divided up into pages.

When running low on memory, OS swaps pages out to
disk (swap file).

– Even without swap file, OS can "swap" our executable
code's memory page because it's already on disk.

● Page fault
– If page is swapped to disk,..

● Problem
– Page faults are..

24-04-02 14

App 1) Memory Locking solution

● Solution: Memory Locking
– Ask the kernel to

..

● Run this code before any RT processing starts

 /* Lock all current and future pages
 preventing being paged to swap */
 if (mlockall(MCL_CURRENT | MCL_FUTURE)) {

 perror("mlockall failed");
 exit(-1); // Or handle error

 }

SOURCE: Memory for Real-time Applications: the Linux Foundation
https://wiki.linuxfoundation.org/realtime/documentation/howto/applications/memory#memory_locking

24-04-02 15

App 2) Stack Memory

● Each thread has its own stack in memory.
– If spawning many threads, can..

● Problem
– If all pages are locked in RAM, we must ensure we

don't exhaust available memory.

– Spawning new thread allocates new memory;
if locked to RAM then triggers a page fault.

● Solution
– ..

– Understand memory use of each thread,
and..
(default ~8mb)

SOURCE: Memory for Real-time Applications: the Linux Foundation
https://wiki.linuxfoundation.org/realtime/documentation/howto/applications/memory#memory_locking

24-04-02 16

App 2) Stack Memory

● Set thread stack size:
 static void create_rt_thread(void)
 {

 pthread_t thread;
 pthread_attr_t attr;

 /* init to default values */
 if (pthread_attr_init(&attr))

 error(1);

 /* Set a specific stack size */
 int size = PTHREAD_STACK_MIN + MY_STACK_SIZE;
 if (pthread_attr_setstacksize(&attr, size))

error(2);

 /* Finally start the actual thread */
 pthread_create(&thread, &attr, rt_func, NULL);

 }

SOURCE: Memory for Real-time Applications: the Linux Foundation
https://wiki.linuxfoundation.org/realtime/documentation/howto/applications/memory#memory_locking

24-04-02 17

App 3) Dynamic Memory

● Problem
– Dynamically allocating or freeing memory can

..

● Solution
– RT critical paths should not dynamically allocate or free

memory.

– Instead, preallocate all memory for RT paths:

● init() functions dynamically allocate memory

● Non-RT code allocate memory, pass pointer to RT
path

● ..

24-04-02 18

App 4) Priorities and Scheduling

● OS schedules tasks (jobs) based on its scheduling
algorithm and task priority.

● Problem
– Some tasks are more time critical, and must be run

sooner than others.

● Solution
– Assign each task a reasonable priority

– ..

● More to come on this!

24-04-02 19

Summary

● Real-time
– Hard RT requires scheduling guarantees

– Soft RT requires a best-effort with low latency

● OS Features
– Preemptable kernel with priorities for tasks

● App Features
– Memory locking to prevent page faults

– Task stack memory management to reduce memory
pressure

– No dynamic memory allocation/free on RT path

– Task priorities

