
25-03-17 1

Transferring data between
R5 <==> Linux

© Brian FraserSlides 15.2CMPT 433

25-03-17 2

Topics

1) How we share data between Linux and the R5

25-03-17 3

Memory sharing

● To use BTCM, Linux global address 0x79020000
– Must be mapped into your app’s memory space with mmap()

R5 MCU ATCM
(32KB)

R5 MCU BTCM
(32KB, in 2 banks)

0x0000 0000

0x0004 1010 (?)0x7900 0000

0x7902 0000

.. ..

25-03-17 4

Memory Use

● Shared Memory Idea
– Directly put values into R5’s memory to share values

– Hint:..

0x0000 Start of my data:
int flashCount;
bool isBtnPressed;

struct myData {
 int flashCount;
 bool isBtnPressed;
}

mySharedData.h

R5’s BTCM (32KB)

My Linux
App

My
R5

Code

#include#include

The
Dream!

25-03-17 5

Sample Program - Shared Struct
typedef struct {

 bool isLedOn;
 bool isButtonPressed;
} sharedMemStruct_t;

sharedDataStruct.h

● Shared .h file
– Create one .h file which defines

..
between R5 & Linux

– Each program #include this same file

Scratch this idea...
It does not work on the BYAI

at the moment!

25-03-17 6

Reality

● The R5 halts when accessing a struct pointer.
– Trying to do myStruct->count = 0;

haults the processor.

– But, using a separate pointer works:
int *ptr = &myStruct->count;
*ptr = 0;

● Why?
– No clue.

● Solution?
– Raw memory access, or array access.

25-03-17 7

Demo

● See sharedMem example
– R5 code built with r5_mcu_build.sh

– Linux code built with make

● Load R5 code with load_r5_mcu.sh

● What could we do to improve the code from raw
memory pointers?

– Array?

– Enum?

25-03-17 12

Packing Structs

25-03-17 13

Data Types

● C data types can be of different sizes
– C spec simply mentions their relative size

– R5 and Linux use:
1 byte: char
2 bytes: short
4 bytes: int, long, float
8 bytes: long long, double

● ..
– Gives integer data types based on #bits

– Useful for..
uint8_t, uint16_t, uint32_t, uint64_t
int8_t, int16_t, int32_t, int64_t

25-03-17 14

Structs

● Structs store different types of data
in one allocated unit of memory

● How does this layout in memory?

numPuffs

hasBigTeeth

numCookiesEaten

numPuffs

hasBigTeeth

numCookiesEaten

.. .. 2 Processors

● Incorrect alignment gives a
bus error

● Word align int/uint32_t

● Double world align
doubles, long long, uint64_t

struct bigBadWolfData_t {
 char numPuffs;
 bool hasBigTeeth;
 int numCookiesEaten;
};

25-03-17 15

Padding Structs

struct bigBadWolfData_t {
 char numPuffs;
 bool hasBigTeeth;
 char _pad1, _pad2;
 int numCookiesEaten;
};

numPuffs

hasBigTeeth

_pad1

_pad2

numCookiesEaten

Padded

Padding bytes

● Add extra bytes to struct..

char/bool: byte aligned

int/uint32_t: word aligned

double/uint64_t: dword aligned

● Once padded correctly, struct is
identical as both packed
and unpacked processors

– Incorrect padding means values
written to a field by one processor
not seen correctly by other.

25-03-17 17

Troubleshooting

● Hard to debug the R5 because
..

– Write very little code at a time, then test it.

– Flash the LED for some visual status

● Common Issues
– Permission denied on /dev/mem:

run with sudo

– Input/output not working:
check you have run GPIO code on Linux first

– Data exchange problems:
R5 halts on struct access; use array.

– Changes to code not running:
add compile-time error to check if correct code is compiling

25-03-17 20

Summary

● R5 Memory
– 32KB in ATCM and BTCM banks

– Can use a struct to define which values are in shared
memory

● NOPE! Use raw memory / array

● Linux <==> R5 Memory
– Linux app calls mmap() to request access to R5 memory

● Alignment / Packing
– pad structs to line up data

