Real-Time Processor (R5)© Brian Fraser **CMPT 433** Slides 15.1

Topics

- 1) How can we do hard real-time on the BYAI?
- 2) How can we get our code into the R5?
- 3) How can we use GPIO with the R5?

Hard Real-Time with BYAI: About the R5

Our Definitions of Realtime

- Hard Real-time
 - User requires..
 - "Guaranteed Services" Mathematical/logical proof or exhaustive simulation required
 - Hard real-time is about..
- Soft Real-time
 - User only requires..

(statistical analysis)

"Best effort Services"
 E.g.: Average # missed deadline < 2 per minute.

4

- Soft real-time is about..

Motivation

- Linux can do fine with soft real-time tasks
 - ~10s of ms accuracy/latency
- Hard real-time
 - Cannot use Linux:

but, Linux gives us great software power!

- Analyze system and

from soft real-time and non-real-time

- Hard real-time task solution
 - Run hard real-time tasks on a processor without Linux
 - Use external processor (Arduino)
 - Use internal microcontroller (R5)

R5F Sub System

- The BeagleY-AI has a Texas Instruments AM67A SoC..
 - Powerful main processor: Arm Cortex-A53 (quad-core, 1.4GHz)
 - 2 Dedicated real-time processors: Arm Cortex-R5 (single-core, 800MHz)
 - 2 general purpose digital signal processors (DSPs):
 C7x DSP (4-TOPS with Matrix Multiply Accelerator)
- We'll use:

..
GPIO for NeoPixel LED

- R5 is useful for hard real-time interactions, such as:
 - deterministic latency to respond to GPIO event
 - .. GPIO and .. (Ex: timing ultrasonic distance sensor readings)
 - .. (manual) protocol implementation: UART, I2C, SPI, Neo-pixel 1-wire protocol, etc.
- Called the Cortex R5F Subsystem (R5FSS)
 - The F means it has a hardware floating point unit.

PRU Architecture

- 3 R5's:
 - Dedicated R5 core to manage boot, power modes
 - Available R5 for running custom code.
 - Available R5; able to access different GPIO pins.
- Each R5:
 - 32-bit ARM processors, 800MHz
 - 2-banks of fast (uncached) memory:
- Resources
 - Can share RAM banks with Linux
 - Each R5F allows access to different GPIO pins
 - Peripheral access (UART, etc)
 - And more! (interrupts, ...)

Interface to PRU

- Linux's Remote Processor Framework
 - ..
 - called remoteproc
- (byai)\$ Is /sys/class/remoteproc/
 - remoteproc0 DSP #1
 - remoteproc1 DSP #2
 - remoteproc2 R5 MCU
 - remoteproc3 R5 WKUP
 - remoteproc4 R5 Main
- View status of processor by viewing its state file (byai)\$ cat /sys/class/remoteproc/rempoteproc3/state

Coding for the R5

25-03-12

10

Sample Program

```
#define DELAY TIME uS
                       (250 * 1000)
// Device tree nodes for pin aliases
#define LED0_NODE DT_ALIAS(led0)
#define BTN0_NODE DT_ALIAS(btn0)
static const struct gpio_dt_spec led = GPIO_DT_SPEC_GET(LEDO_NODE, gpios);
static const struct gpio_dt_spec btn = GPIO_DT_SPEC_GET(BTNO_NODE, gpios);
static void initialize_gpio(const struct gpio_dt_spec *pPin, int dir) {
                                             int main(void) {
  gpio_is_ready_dt(pPin);
                                                 printf("Hello World! %s\n");
  gpio_pin_configure_dt(pPin, dir);
                                                 initialize_gpio(&led, GPI0_OUTPUT_ACTIVE);
}
                                                 initialize_gpio(&btn, GPI0_INPUT);
                                                 while (true) {
                                                     gpio_pin_toggle_dt(&led);
                                                     k_busy_wait(DELAY_TIME_uS);
                                                     // Delay longer when button pressed
                                                     if (gpio_pin_get_dt(&btn) == 0) {
                                                          k busy wait(DELAY TIME uS);
                                                      }
                                                 }
                                                 return 0;
25-03-12
                                             }
```

Build Process

- Our R5 programs will use ..
- Setup
 - Install the Zephyr SDK & Tools
 SDK = ...
- On Host
 - Build project using CMake Builds build/zephyr_mcu.elf
 - Copy to RFS
- On Target
 - Copy zephyr_mcu.elf to /lib/firmware
 - Load into R5:

echo zephyr.elf | sudo tee /sys/class/remoteproc/remoteproc2/firmware echo start | sudo tee /sys/class/remoteproc/remoteproc2/state

GPIO with R5

Overview

• C code refers to pins by name.

```
// Device tree nodes for pin aliases
#define LED0_NODE DT_ALIAS(led0)
static const struct gpio_dt_spec led = GPIO_DT_SPEC_GET(LED0_NODE, gpios);
int main(void)
{
    gpio_is_ready_dt(&led);
    gpio_pin_configure_dt(&led, GPI0_OUTPUT_ACTIVE);
    while (true) {
        gpio_pin_toggle_dt(&led);
        k_busy_wait(250 * 1000); //uS
    }
    return 0;
}
```

Device Tree

My project's device tree overlay.

```
aliases {
             led0 = &mcu_led;
         };
         leds {
             compatible = "gpio-leds";
11
             mcu_led: led_gpio7 {
12
                 gpios = <&mcu_gpio0 9 GPI0_ACTIVE_HIGH>;
13
             };
14
         };
15
         pinctrl_mcu: pinctrl_mcu@4084000 {
17
             compatible = "ti,k3-pinctrl";
             reg = <0x04084000 0x88>;
19
             status = "okay";
         };
     };
22
23
     &pinctrl_mcu {
         mcu_gpio0_led_btn_default: mcu_gpio0_led_btn_default {
             pinmux = <K3_PINMUX(0x0024, PIN_OUTPUT, MUX_MODE_7)>; /* (B3) GPI07*/
         };
27
     };
29
     &mcu_gpio0 {
         pinctrl-0 = <&mcu_gpio0_led_btn_default>;
31
         pinctrl-names = "default";
32
         status = "okay";
33
```

Demystifying GPIO

How do we know what to put into a device tree?
 On schematic, identify pin:

25-03-12

17

Zen Hat Pinout

Zen Ha	at Pinout										
Exposed Heade Hat Use			Use	Name	Connector		Name	Use		Hat Use	Exposed Header
GPIO Header				3v3	1	2	5v				
GPIO Header	Accelerometer, ADC, Audio		12C1 - SDA	GPIO2	3	4	5v				LED Strip
GPIO Header	Accelerometer, ADC, Audio		12C1 - SCL	GPIO3	5	6	GND			UART Header	UART Header
GPIO Header		х		GPIO4	7	8	GPIO14	UART - TXD	X	UART - TXD	UART Header
GPIO Header				GND	9	10	GPIO15	UART - RXD	X	UART - RXD	UART Header
	Rotary Encoder - EQEP0_B			GPIO17	11	12	GPIO18	PCM - CLK		Audio - BCLK	
	LCD - DC			GPIO27	13	14	GND				LED Strip
	LCD - RST			GPIO22	15	16	GPIO23	2	x	NeoPixel Data Out (R5 GPIO)	LED Strip
				3v3	17	18	GPIO24			Encoder Push-button (R5 GPIO)	
GPIO Header	LCD - DIN		SPI0 - MOSI	GPIO10	19	20	GND				
GPIO Header		Х?	SPI0 - MISO	GPIO9	21	22	GPIO25			LED	
GPIO Header	LCD - CLK		SPI0 - SCLK	GPIO11	23	24	GPIO8	SPI0 - CE0		LCD - CS	
				GND	25	26	GPI07	SPI0 - CE1	x		GPIO Header
	<only but="" i2c,="" i2c1="" prefer=""></only>		EEPROM - SDA	GPIO0	27	28	GPIO1	EEPROM-SCL		<only but="" i2c,="" i2c1="" prefer=""></only>	
	Joystick Push-button			GPIO5	29	30	GND				
GPIO Header		х		GPIO6	31	32	GPIO12	PWM0		LED Emitter	
Transferration and a second second	LCD - Backlight (BL)		PWM1	GPIO13	33	34	GND				
	Audio - WCLK		PCM - FS	GPIO19	35	36	GPIO16			Rotary Encoder - EQEP0_A	
	Audio - Reset			GPIO26	37	38	GPIO20	PCM - DIN		Audio - DIN	
				GND	39	40	GPIO21	PCM - DOUT		Audio - DOUT	
	-	х	Available GPIO	-				-		-	

Checkout info on Hat Pin

• Use website to investigate a hat pin https://pinout.beagleboard.io/

Pinout						MCU
3v3 Power	1	•	۲	2	5v Power	
GPIO 2 (12C1 SDA)	3	•	۲	4	5v Power	
GPIO 3 (I2C1 SCL)	5	۲	•	6		CDIO
GPIO 4	7	۲	۲	8	GPIO 14 (UART TX)	GFIU
	9	٠	۲	10	GPIO 15 (UART RX)	
GPIO 17	11	۲	۲	12	GPIO 18 (PCM CLK)	Alt0
GPIO 27	13	۲	•	14		
GPIO 22	15	۲	•	16	GPIO 23	
3v3 Power	17	۲	•	18	GPIO 24	Physical/B
GPIO 10 (SPI0 MOSI)	19	۲	•	20		opio/poli
GPIO 9 (SPI0 MISO)	21	۲	•	22	GPIO 25	• GPIO/BCN
GPIO 11 (SPI0 SCLK)	23	۲	۲	24	GPIO 8 (SPI0 CE0)	 SoC pin B3
	25	٠	0	26	GPIO 7 (SPI0 CE1)	
GPIO 0 (EEPROM SDA)	27	۲	۲	28	GPIO 1 (EEPROM SCL)	
GPIO 5	29	۲	•	30		
GPIO 6	31	۲	•	32	GPIO 12 (PWM0)	
GPIO 13 (PWM1)	33	۲	•	34		
GPIO 19 (PCM FS)	35	۲	•	36	GPIO 16	
GPIO 26	37	۲	0	38	GPIO 20 (PCM DIN)	
	39	٠	0	40	GPIO 21 (PCM DOUT)	

MCU GPIO	SoC Pin 1-WIRE	I2C 5v Power	Ground C	PCLK* JTAG*				
	PWM 3	v3 Power UART	SPI DPI*	PCM SDIO'				
Bro	owse pinouts for H	ATs, pHATs and	add-ons »					
GPIO 7 (SPI Chip Select 1)								
Alt0	Alt2		Alt7					
WKUP_UART0_RXD	MCU_SI	PI0_CS2	MCU_GPIC	0_9				
 Physical/Board p GPIO/BCM pin 7 SoC pin B3 	bin 26							

25-03-12

19

PAD Config Register

- We know we are working with Ball Number B3
 - Look it up in processor data sheet: https://www.ti.com/lit/ds/symlink/am67a.pdf

BALL NUMBER [1]	BALL NAME [2] PADCONFIG Register [15] PADCONFIG Address [16]	SIGNAL NAME [3]		
	WKUP_UART0_RXD	WKUP_UART0_RXD		
В3		MCU_SPI0_CS2		
	0x04084024	MCU_GPIO0_9		

- Tells us:
 - (**MCU_**PADCONFIG9)
 - Configuration reg addr = 0x04084024

25-03-12

20

Config Register Offset

- Given the config register address, we actually need..
 - The pin's config register offset is bottom 15 bits of the address:

#define K3_PINMUX(offset, value, mux_mode) (((offset) & 0x1fff)) ((value) | (mux_mode))

- So offset for address 0x04084024

Configuration Confession

- This investigation is (likely?)correct; however, the configuration is not yet working for MCU GPIO!
 - A work-around is to execute the GPIO command in Linux to set configuration: gpioset gpiochip0 9=1
 - This causes Linux to setup the configuration in the way we need it for the R5.

Example Blinky

Wire up

Let's have R5 flash a custom wired LED
 Wire this circuit

Process: Build

- Build on host cmake -S . -B build -DBOARD=beagley_ai/j722s/mcu_r5f0_0
 cd build make cd ..
- Copy to NFS

mkdir -p ~/cmpt433/public/r5/

cp build/zephyr/zephyr.elf ~/cmpt433/public/r5/zephyr_mcu.elf

Process: Install

- Copy firmware from NFS to firmware folder sudo cp /mnt/remote/r5/zephyr_mcu.elf /lib/firmware/
- Start code

echo zephyr_mcu.elf | sudo tee /sys/class/remoteproc/remoteproc2/firmware

echo start | sudo tee /sys/class/remoteproc/remoteproc2/state

 Work-around for GPIO Config gpioset gpiochip0 9=1

Summary

- Use R5 to meet hard real-time deadlines for RT tasks
- Process
 - Develop on host
 - Compile on host, install on Target
- GPIO for R5
 - Use of device trees
 - Finding pin info:
 - Use circuit diagram to find pin.
 - Use BeagleY-AI pinout for ball number.
 - Use AM67a Datasheet for register info.
 - Configure in device tree.