Bit Twiddling

Topics

1) What are the bitwise operators?
2) What is a bit flags and masks?

3) How to:
a) Read / set single bits.

b) Read / set multiple bits.
4) Can C access hits better than just bitwise?

21-3-20

Bitwise and Bitmasks

* Bitwise operators

- |i1s OR - Set selected bits

- &ISAND -..

- ~I1SNOT - Invert all bits

- Mis XOR - Invert selected bits.
* Bit Flags

— Store multiple binary conditions in a multi-bit value.
- Ex: encoding the state of 8 LEDs in one char.

e Mask
- Used to..

- Has all 1's for bits of that field; O elsewhere.

’21-3-20

Running Example

« STAT: GPIO Status Reg

15 14 13 12 11 10 9 8
LED3 | LED2 | LED1 | LEDO | BTN3 | BTN2 | BTN1 | BTNO
RorW RW RW RW R/W R R R R
7 6 5 4 3 2 1 0
SPD2 @ SPD1 SPDO - - - - FLASH
RorW RW RW R/W R R R R R/W
* LEDX: Set (1) when on
* BUTTONX: Read 0 when pressed; 1 otherwise.
« SPD2-0: Flash speed; between 0 (slow) and 7 (fast)
« FLASH: 1 means flashing; 0 means solid (on).

’21-3-20

Running Example

Bit

Bit

15 14 13 12 11 10 9 8
LEDS3 LED?Z2 LED1 LEDO BTNS3 BTNZ2 BTN1 BTNO
V4 6 5 4 3 2 1 0
SPD2 SPD1 @ SPDO FLASH
e \WWhat does this value mean? OxC2A7

21-3-20

BIT Numbers and Masks

 Bit Numbers

- #define LED3_BIT 15
#define LED2_BIT 14

- #define BTN3_BIT 11

- #define SPD2_BIT 7
#define SPD1 _BIT 6
#define SPDO_BIT 5

- #define FLASH_BIT O

 Convert Bit Number to Mask
- #define LEDO_MASK (1 << LEDO_BIT)

’21-3-20

Reading a Bit

e Read an LED State
- Bool isLed0On = ..

 Read a Button State
- Bool isBtnOPressed = ..

* As Macros
- #define IS_LED ON(pin) \
(STAT & (1 << (pin)) '=0)

- #define IS BUTTON_ PRESSED(pin) \
(STAT & (1 << (pin)) == 0)

21-3-20

Reading Bits

 Read Multiple Bits
- #define LED MASK 0xF0O0O;

- _Bool iIsAnyLEDOnN = ..

- Bool areAllLEDsOn = ..

* Read Multiple Active-Low Bits
- #define BTN_MASK 0x0F00

- _Bool isAnyButtonPressed = ..

- Bool areAllButtonsPressed =
(STAT & BTN_MASK) == 0;

21-3-20

Drive Bits

e Turnon LED 2
STAT..

e Turn off LED 2
STAT..

e Turn off LEDs 1 and 2
STAT &= ~(1<<LED2_BIT | 1<<LED1 BIT);

e Turn on/ off all LEDs
STAT |= LED_MASK;
STAT &= ~LED MASK;

* Turn off all LEDs but LED2 (leave it)
STAT..

’21-3-20

Toggle Bits

* // Toggle LEDO:
STAT

* // Toggle all LEDs:
STAT "= LED_MASK,

21-3-20

10

Multi-Bit Fields

 Read value
- #define SPD_MASK 0x00EO
Int speed =

e Set value
- void setFlashSpeed(int speed) {
Int newSpeed = (speed << SPDO_BIT)
& SPD_MASK;
STAT = (STAT & ~SPD_MASK) | newSpeed,

}

Explain!

’21-3-20

11

Common Errors

~vs !, & vs &&, | vs ||
&= vs &=~(..)
bit# vs mask: LED1 BIT vs (1<<LED1 BIT)

use (1<<x) not pow(2,X)
use (1<<x) | (1<<y), not 1<<(X]Yy)
b &= ~(1<<X) Isnot b =~(1<<x)

(a & ~b) snot (~a&b)

’21-3-20

12

Real World Example: ATMEL CAN128

8-bit Timer/Counter Register Description

Timer/Counter2 Control Register A- TCCR2A

21-3-20

Bit 7 6 5 4 3 2 1 0

FOC2A | WGM20 | COM2A1 | COM2A0 | WGM21 Cs22 cs21 Cs20 I TCCR2A
Read/Write w R/W R/W R/W R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0

 Bit7 — FOC2A: Force Output Compare A

The FOC2A bit is only active when the WGM bits specify a non-PWM mode. However, for ensur-
ing compatibility with future devices, this bit must be set to zero when TCCR2A is written when
operating in PWM mode. When writing a logical one to the FOC2A bit, an immediate compare
match is forced on the Waveform Generation unit. The OC2A output is changed according to its
COM2A1:0 bits setting. Note that the FOC2A bit is implemented as a strobe. Therefore it is the
value present in the COM2A1:0 bits that determines the effect of the forced compare.

A FOC2A strobe will not generate any interrupt, nor will it clear the timer in CTC mode using
OCR2A as TOP.

The FOC2A bit is always read as zero.

 Bit6,3-WGM21:0: Waveform Generation Mode
These bits control the counting sequence of the counter, the source for the maximum (TOP)

13

Harder Exercises

* Decrement the current speed (SPD) by 1. Don't
decrement if already O.

e Write a function to make it seem like an LED iIs
bouncing back and forth.

* Write a function that does:
If button N Is pressed, turn on LEDs O - N.

21-3-20

14

C-Bit Fields

21-3-20

15

C Bit-Fields

* Declare fields in a struct with sizes (# bits)
— Compiler pushes fields together to conserve space.

e EX:

Represent a colour with 8 bits each for red, green,
blue; and 1 bit for transparent:

struct colour_s {

unsignec
unsignec
unsignec
unsignec

%

int red
Int green
Int blue
Int transparent:

. 8
. 8;
8
1

— Entire struct needs only one unsigned int (32-bits)

21-3-20

16

Bit-field Detalls

* Access fields by name:
— struct colour_s border = {Oxff, Oxff, 0x00, 1}
printf(“Red %d\n”, border.red);

- border.transparent = 1,

When assigning a value, ensure you don't have
more bits that expected

 WARNING: Code is non-portable: Must
L. retest on new hardware or
The order the fields get packed.. compiler.

_ : - - OK for platform specific
Is the first field in the LSB, or hardware access: poor for

IS the last field in the LSB? applications needing cross-
platform binary data
compatibility

21-3-20 17

STAT Example

struct stat_s {

%

unsigned int flash:
unsigned int

unsigned int spd
unsigned int btn
unsigned int led

1
4
3

4

4

// Unused bits

#define STAT_ADDR 0xC800153C

struct stat_s *pSTAT = (struct stat_s *) STAT_ADDR;

int main() {

}

pSTAT->flash = 1;

if (pSTAT->btn == OxO0F) {
pSTAT->spd += 2;

}

pSTAT->led = pSTAT->btn;

return O;

Unnamed fields take up unused
space to line fields up as required

Must test to ensure fields don’t
need to be..

’21-3-20

18

