
21-3-20 1

Bit Twiddling

© Dr. B. FraserSlides 13CMPT 433

21-3-20 2

Topics

1) What are the bitwise operators?

2) What is a bit flags and masks?

3) How to:
a) Read / set single bits.

b) Read / set multiple bits.

4) Can C access bits better than just bitwise?

21-3-20 3

Bitwise and Bitmasks

● Bitwise operators
– | is OR - Set selected bits

– & is AND -..

– ~ is NOT - Invert all bits

– ^ is XOR - Invert selected bits.

● Bit Flags
– Store multiple binary conditions in a multi-bit value.

– Ex: encoding the state of 8 LEDs in one char.

● Mask
– Used to..

– Has all 1's for bits of that field; 0 elsewhere.

21-3-20 4

Running Example

● STAT: GPIO Status Reg

● LEDx: Set (1) when on

● BUTTONx: Read 0 when pressed; 1 otherwise.

● SPD2-0: Flash speed; between 0 (slow) and 7 (fast)

● FLASH: 1 means flashing; 0 means solid (on).

Bit 15 14 13 12 11 10 9 8

LED3 LED2 LED1 LED0 BTN3 BTN2 BTN1 BTN0

R or W R/W R/W R/W R/W R R R R

Bit 7 6 5 4 3 2 1 0

SPD2 SPD1 SPD0 - - - - FLASH

R or W R/W R/W R/W R R R R R/W

21-3-20 5

Running Example

● What does this value mean? 0xC2A7

Bit 15 14 13 12 11 10 9 8

LED3 LED2 LED1 LED0 BTN3 BTN2 BTN1 BTN0

Bit 7 6 5 4 3 2 1 0

SPD2 SPD1 SPD0 - - - - FLASH

21-3-20 6

BIT Numbers and Masks

● Bit Numbers
– #define LED3_BIT 15

#define LED2_BIT 14
...

– #define BTN3_BIT 11
...

– #define SPD2_BIT 7
#define SPD1_BIT 6
#define SPD0_BIT 5

– #define FLASH_BIT 0

● Convert Bit Number to Mask
– #define LED0_MASK (1 << LED0_BIT)

21-3-20 7

Reading a Bit

● Read an LED State
– _Bool isLed0On = ..

● Read a Button State
– _Bool isBtn0Pressed = ..

● As Macros
– #define IS_LED_ON(pin) \

(STAT & (1 << (pin)) != 0)

– #define IS_BUTTON_PRESSED(pin) \
(STAT & (1 << (pin)) == 0)

21-3-20 8

Reading Bits

● Read Multiple Bits
– #define LED_MASK 0xF000;

– _Bool isAnyLEDOn = ..

– _Bool areAllLEDsOn = ..

● Read Multiple Active-Low Bits
– #define BTN_MASK 0x0F00

– _Bool isAnyButtonPressed = ..

– _Bool areAllButtonsPressed =
(STAT & BTN_MASK) == 0;

21-3-20 9

Drive Bits

● Turn on LED 2
STAT..

● Turn off LED 2
STAT..

● Turn off LEDs 1 and 2
STAT &= ~(1<<LED2_BIT | 1<<LED1_BIT);

● Turn on / off all LEDs
STAT |= LED_MASK;
STAT &= ~LED_MASK;

● Turn off all LEDs but LED2 (leave it)
STAT..

21-3-20 10

Toggle Bits

● // Toggle LED0:
STAT

● // Toggle all LEDs:
STAT ^= LED_MASK;

21-3-20 11

Multi-Bit Fields

● Read value
– #define SPD_MASK 0x00E0

int speed =

● Set value
– void setFlashSpeed(int speed) {

int newSpeed = (speed << SPD0_BIT)
& SPD_MASK;

STAT = (STAT & ~SPD_MASK) | newSpeed;
}

Explain!

21-3-20 12

Common Errors

● ~ vs !, & vs &&, | vs ||

● &= vs &= ~(..)

● bit # vs mask: LED1_BIT vs (1<<LED1_BIT)

● use (1<<x) not pow(2,x)

● use (1<<x) | (1<<y), not 1 << (x | y)

● b &= ~(1<<x) is not b = ~(1<<x)

● (a & ~b) is not (~a & b)

21-3-20 13

Real World Example: ATMEL CAN128

21-3-20 14

Harder Exercises

● Decrement the current speed (SPD) by 1. Don't
decrement if already 0.

● Write a function to make it seem like an LED is
bouncing back and forth.

● Write a function that does:
If button N is pressed, turn on LEDs 0 - N.

21-3-20 15

C-Bit Fields

21-3-20 16

C Bit-Fields

● Declare fields in a struct with sizes (# bits)
– Compiler pushes fields together to conserve space.

● Ex:
Represent a colour with 8 bits each for red, green,
blue; and 1 bit for transparent:

– Entire struct needs only one unsigned int (32-bits)

struct colour_s {
unsigned int red : 8;
unsigned int green : 8;
unsigned int blue : 8;
unsigned int transparent : 1;

};

21-3-20 17

...

Bit-field Details

● Access fields by name:
– struct colour_s border = {0xff, 0xff, 0x00, 1}

printf(“Red %d\n”, border.red);

– border.transparent = 1;

When assigning a value, ensure you don't have
more bits that expected

● WARNING:
The order the fields get packed..

– Is the first field in the LSB, or
is the last field in the LSB?

Code is non-portable: Must
retest on new hardware or

compiler.

OK for platform specific
hardware access; poor for
applications needing cross-

platform binary data
compatibility

21-3-20 18

STAT Example

Unnamed fields take up unused
space to line fields up as required

struct stat_s {
unsigned int flash: 1;
unsigned int : 4; // Unused bits ..
unsigned int spd : 3;
unsigned int btn : 4;
unsigned int led : 4; ..

};

#define STAT_ADDR 0xC800153C
struct stat_s *pSTAT = (struct stat_s *) STAT_ADDR;

int main() {
pSTAT->flash = 1;
if (pSTAT->btn == 0x0F) {

pSTAT->spd += 2;
}
pSTAT->led = pSTAT->btn;
return 0;

}

Must test to ensure fields don’t
need to be..

