
22-2-28 1

Linux Misc Drivers

© Dr. B. FraserSlides #12.3CMPT 433

Kernel coding is different!

Can be hard to understand
different syntax, functions,
advanced C code in kernel!

Caution

22-2-28 2

Topics

1) How can we easily create a new driver?

2) How can we read data from a driver?

3) Are user level pointers dangerous?

4) How can we write data to a driver?

22-2-28 3

Setting up a Misc Driver

22-2-28 4

Driver Interaction

● Programs and users interact with drivers via nodes
(files) in the file system

– /dev/ - access the driver’s service

(host)$ echo ‘Hello world’ > /dev/ttyUSB0

– /proc/ - access information about the driver

(bbg)$ cat /proc/cmdline

● So, a driver creates nodes to allow access to it.

22-2-28 5

Misc-Driver

● Writing a driver can be complicated!
– Allocating major/minor..

for connecting into the file system

– Creating nodes (files) in /dev and /sys for interacting
with driver

– Registering as a character (char) driver

● Kernel helps with a simplified structure for “normal”
drivers:

..

22-2-28 6

Misc Data Structures

● #include <linux/miscdevice.h>

● struct miscdevice
– struct holding:

● ..

● node number, and

● pointer to file_operations struct (“fops”).

#define MY_DEVICE_FILE "my_demo_misc"

static struct miscdevice my_miscdevice = {
.minor = MISC_DYNAMIC_MINOR, // Let system assign
.name = MY_DEVICE_FILE, // /dev/.... file.
.fops = &my_fops // Callback functions.

};

22-2-28 7

Misc Data Structures

● file_operations (“fops”)
– ..

– Each member in struct is a function pointer;
set the member to point to your function.

// My functions which I need called to handle file operations
static int my_open(struct inode *inode, struct file *file) { ... }
static int my_close(struct inode *inode, struct file *file) { ... }
static ssize_t my_read(struct file *file, char *buff, size_t count, loff_t *ppos) { ... }

// Set callbacks: (structure defined in /linux/fs.h)
struct file_operations my_fops = {

.owner = THIS_MODULE,

.open = my_open,

.release = my_close,

.read = my_read,
};

22-2-28 8

Misc Functions

● Register and Unregister (call from your init and exit)
– misc_register(&my_miscdevice);

– misc_deregister(&my_miscdevice);

● Demo: See demo_misc_template.c

static int __init my_init(void)
{

return misc_register(&my_miscdevice);
}

static void __exit my_exit(void)
{

misc_deregister(&my_miscdevice);
}

22-2-28 9

Reading from a
Misc Driver’s

Virtual File

22-2-28 10

Recap: Virtual File

● Misc driver creates a node in the file system which is
a virtual file.

– All read and write calls to this node are
relayed, by the kernel, to the driver.

– The driver’s file_operations struct links
read/write operations on the node to our functions.

22-2-28 11

User Level: Reading from virtual file

● Notes
– read() might partially fill buffer.

– read() returns 0 when done reading all data.

● Demo: See 12-ReadFile/readfile.c
(bbg)$./readfile 5 /proc/version

char buffer[256];

int fd = open(....)
while (true) {

int bytesRead = read(fd, buffer, 256);
if (bytesRead == 0) {

break;
}

// print out buffer...
}
close(...);

Calls driver’s
my_open()

Calls driver’s
my_read()

Calls driver’s
my_close()

Limited buffer size,
so must call read()

in a loop.

22-2-28 12

Kernel Level: Reading from virtual file

User
Space
(Mode)

Kernel
Space
(Mode)

UserApp

C Library (glibc)

Linux Kernel

My Misc
Driver

sys-calls
across

Kernel gets sys-
call, sees node is

for misc driver.

Calls our driver’s
functions

Our result returned
to user application

Kernel’s misc code
does some work

22-2-28 13

Kernel Level: Reading from virtual file

int my_read(
struct file *file,

char *buffer,

int count,

long long *ppos

);

Info on the currently open “file”.
Can put own data into struct if desired.

User’s buffer to write into.
!! Pointers from user space not trusted !!

Size of user’s buffer (bytes).

..
Initially set to starting offset in file, we must
increment it by as many bytes as we return.

Returns # bytes
..

22-2-28 14

Example reading
● User App: buffer size 5, reads until driver returns 0.

● Driver: has data “AB...Z” to return (string of 26 letters).

Call 1:
ppos @ start 0
fill buffer: ABCDE
ppos @ end 5
return 5

Call 2:
ppos @ start 5
fill buffer: FGHIJ
ppos @ end 10
return 5

Call 3:
ppos @ start 10
fill buffer: KLMNO
ppos @ end 15
return 5

Call 4:
ppos @ start 15
fill buffer: PQRST
ppos @ end 20
return 5

Call 5:
ppos @ start 20
fill buffer: UVWXY
ppos @ end 25
return 5

Call 6:
ppos @ start 25
fill buffer: Z
ppos @ end 26
return 1

Call 7:
ppos @ start 26
fill buffer:
ppos @ end 26
return 0

Done!

22-2-28 15

Misc Driver Read Demo

● Edit demo_miscdrv.c
– When user does:

(bbg)$ cat /dev/my_misc_demo

make driver return values in data[] array (“ABC...Z”)

– Solution in demo_miscdrv_sol.c

See demo notes...

22-2-28 16

HERE BE DRAGONS
Using User Space Buffers

22-2-28 17

User Level pointers in Kernel Space

● Kernel can access any memory,
so it can follow any pointer from user space.

● ..

● User’s buffer pointer passed to kernel could be:
– ..

– ..

– ..

– ..

● Must validate user-level pointers before using them.

22-2-28 18

Reading From User Buffer

● To read data from user’s buffer:
int bytes_not_copied =

copy_from_user(my_buff, user_ptr, size)
– Safely checks user program has permission to

access size bytes at user_ptr.

● Only needed for pointers
Other values (int’s, char’s, ...) passed by value,
so we are not accessing user’s memory space.

● Example

if (copy_from_user(my_buff, user_data, 10)) {
printk(KERN_ERR "Unable to read from buffer.");
return -EFAULT;

}

22-2-28 19

Writing To User Buffer

● Writing data to user buffer:
int bytes_not_copied = copy_to_user(user_ptr, my_buff, size)

– returns # bytes not copied

● Define in:
#include <linux/uaccess.h>

● Example

char ch;
if (copy_to_user(&user_buff[idx], &ch, sizeof(ch))) {

return -EFAULT;
}

22-2-28 20

Demo

● Change demo_miscdrv.c
– change code in my_read() to write data into user’s

buffer safely.

Note: Attempting to access
user level pointer without

these macros gives
kernel seg-fault.

22-2-28 21

Writing to a
Misc Driver’s
Virtual File

22-2-28 22

Kernel Level: Reading from virtual file

int my_write(
struct file *file,

const char *buffer,

int count,

long long *ppos

);

Info on the currently open “file”.
Can put own data into struct if desired.

User’s buffer to read from.
!! Pointers from user space not trusted !!

Size of user’s buffer (bytes).

Offset into the file - in-out parameter.
Initially set to starting offset in file, we must
increment it by as many bytes as we return.

Returns # bytes
driver read from buffer.

22-2-28 23

Open/Close & Write Demo

● Can create own open() & close() functions for your
misc driver if you need to.

● Write Demo: Change demo_miscdrv.c
– Safely print user’s buffer.

– Safely find and print minimum ASCII character in
user’s buffer.

static int my_open(struct inode *inode, struct file *file)
{

return 0; // Success
}

static int my_close(struct inode *inode, struct file *file)
{

return 0; // Success
}

22-2-28 24

Summary

● Misc Driver
– Simplify writing a character driver.

– file_operations struct connects driver’s functions
with misc driver’s code in kernel.

● Virtual file (node)
– User app reads data from driver via my_read()

– User app writes data to driver via my_write()

● User Level Pointers
– Verify all pointers with:

copy_from_user()
copy_to_user()

