Linux Misc Drivers

Kernel coding is differen

Can be hard to understat
different syntax, function
advanced C code in kern

22-2-28 CMPT 433 Slides #12.3 © Dr. B. Fraser !

1) How can we easily create a new driver?
2) How can we read data from a driver?

3) Are user level pointers dangerous?

4) How can we write data to a driver?

Setting up a Misc Driver

* Programs and users interact with drivers via nodes
(files) in the file system

- /dev/ - access the driver’s service
(host)$ echo ‘Hello world’ > /dev/ttyUSBO

— /proc/ - access information about the driver
(bbg)$ cat /proc/cmdline

e S0, a driver creates nodes to allow access to It.

* Writing a driver can be complicated!
— Allocating major/minor..
for connecting into the file system

- Creating nodes (files) in /dev and /sys for interacting
with driver

- Registering as a character (char) driver

* Kernel helps with a simplified structure for “normal”
drivers:

e #include <linux/miscdevice.h>

e struct miscdevice
— struct holding:

* node number, and
* pointer to file_operations struct (“fops”).

#define MY_DEVICE_FILE "my_demo_misc"

static struct miscdevice my_miscdevice = {
.minor = MISC_DYNAMIC_ MINOR, // Letsystem assign

.name = MY _DEVICE FILE, // [devl/.... file.
fops = &my fops // Callback functions.

%
222

Misc Data Structures

- Each member In struct is a function pointer;
set the member to point to your function.

/I My functions which | need called to handle file operations
static int my_open(struct inode *inode, struct file *file) { ... }
static int my_close(struct inode *inode, struct file *file) { ... }
static ssize_t my read(struct file *file, char *buff, size t count, loff t *ppos) { ... }

I/ Set callbacks: (structure defined in /linux/fs.h)
struct file_operations my_fops = {

.owner = THIS_MODULE,
.open = my_open,
release = my_close,
.read = my_read,

Misc Functions

— misc_register(&my_miscdevice);
— misc_deregister(&my_miscdevice);

static int __init my_init(void)

{
}

return misc_register(&my_miscdevice);

static void __ exit my_exit(void)

{
}

misc_deregister(&my_miscdevice);

. See demo_misc_template.c

22-2-28

Reading from a
Misc Driver’s
Virtual File

* Misc driver creates a node In the file system which is

a virtual file.
- All read and write calls to this node are
relayed, by the kernel, to the driver.

— The driver’s file_operations struct links
read/write operations on the node to our functions.

User Level: Reading from virtual file

char buffer[256];

Calls driver’s _ A :
my_open() int fd = open(....) Limited buffer size,
— so must call read()

while (true) {

Calls driver’s int bytesRead = read(fd, buffer, 256); in a loop.
my_read() if (bytesRead == 0) {

break;

}
/[print out buffer...

Calls driver’s) | _
my_close() close(...);

- read() might partially fill buffer.
- read() returns O when done reading all data.

. See 12-ReadFile/readfile.c

(bbg)$./readfile 5 /proc/version
22-2-28

11

Kernel Level: Reading from virtual file

22-2-28

User
Space
(Mode)

Kernel
Space
(Mode)

C Library (gl bc
sys-calls
across

\

Kernel gets sys-
call, sees node is

for misc driver.

Kernel’'s misc code
does some work

Calls our driver’s
functions
Our result returned
to user application

12

Kernel Level: Reading from virtual file

/ Returns # bytes

I my_read_(s Info on the currently open “file”.
struct file *file, Can put own data into struct if desired.
I o101 (I User’s buffer to write into.

Il Pointers from user space not trusted !!

Int count, sl Size of user’s buffer (bytes).

long long *ppos ~_

iﬁitially set to starting offset in file, we must
); increment it by as many bytes as we return.

22-2-28

13

Example reading

buffer size 5, reads until driver returns O.

22-2-28

has data “AB...Z" to return (string of 26 letters).

Call 1:

ppos @ start0

fill buffer: ABCDE
ppos @ end 5

return S

Call 4.
ppos @ start 15
fill buffer: PQRST

ppos @ end 20
return)

Call 7:

ppos @ start 26
fill buffer:

ppos @ end 26
return 0

Call 2:

ppos @ start5

fill buffer: FGHIJ
ppos @ end 10
return 5

Call 5:

ppos @ start 20

fill buffer: UVWXY
ppos @ end 25
return)

Call 3:

ppos @ start 10

fill buffer: KLMNO
ppos @ end 15
return)

Call 6:

ppos @ start 25
fill buffer: Z
ppos @ end 26
return 1

14

 Edit demo_miscdrv.c
- When user does:
(bbg)$ cat /dev/my_misc_demo

make driver return values in data[| array (“ABC...Z")
— Solution in demo_miscdrv_sol.c

HERE BE DRAGONS
Using User Space Buffers

22-2-28

» Kernel can access any memory,
so it can follow any pointer from user space.

* User’s buffer pointer passed to kernel could be:

* Must validate user-level pointers before using them.

* To read data from user’s buffer:
INt bytes _not_copied =
copy_from_user(my_buff, user_ptr, size)

- Safely checks user program has permission to
access size bytes at user_ptr.

* Only needed for pointers
Other values (int’s, char’s, ...) passed by value,
SO We are not accessing user's memory space.

 Example

if (copy_from_user(my_buff, user_data, 10)) {
printk(KERN_ERR "Unable to read from buffer.");
return -EFAULT,;

)
222

* Writing data to user buffer:
Int bytes_not_copied = copy_to_user(user_ptr, my_buff, size)
— returns # bytes not copied

e Define In:
#include <linux/uaccess.h>

 Example

char ch;

iIf (copy_to_user(&user_buff[idx], &ch, sizeof(ch))) {
return -EFAULT,
}

Demo

- change code in my_read() to write data into user’s
buffer safely.

Note: Attempting to access

user level pointer without
these macros gives
kernel seg-fault.

22-2-28

20

Writing to a
Misc Driver’s
Virtual File

Kernel Level: Reading from virtual file

Returns # bytes
/ driver read from buffer.
Int my_write(
struct file *file, Can put own data into struct if desired.

Info on the currently open “file”.

eI a1 o [0| i<l User’s buffer to read from.
Il Pointers from user space not trusted !!

Int count, sl Size of user’s buffer (bytes).

long long *ppos ~_

Offset into the file - in-out parameter.

Initially set to starting offset in file, we must
); increment it by as many bytes as we return.

22-2-28 22

e Can create own open() & close() functions for your

misc driver if you need to.
static int my_open(struct inode *inode, struct file *file)

{
return O; // Success
}
static int my_close(struct inode *inode, struct file *file)
{
return O; // Success
}

* Write Demo: Change demo_miscdrv.c
— Safely print user’s buffer.

- Safely find and print minimum ASCII character in
user’s buffer.

* Misc Driver
- Simplify writing a character driver.

- file_operations struct connects driver’s functions
with misc driver’'s code in kernel.

* Virtual file (node)
- User app reads data from driver via my_read()

— User app writes data to driver via my_write()

* User Level Pointers
- Verify all pointers with:
copy_from_user()
copy_to_user()

