
Intro to Electronics (For us software people)

Topics

- What grade 9 physics do I need to remember?
 = V, A, Ω
- Connecting wires into circuits
- What components go into our circuits?
- How (not to) fry your board!

Basic Theory

Voltage

Voltage

. .

- It is the...

• We use only direct current (DC) voltages in our electronics.

Voltage			
Symbol	V		
Units	Volts [V]		
Our Usual Range	0V to +3.3V		

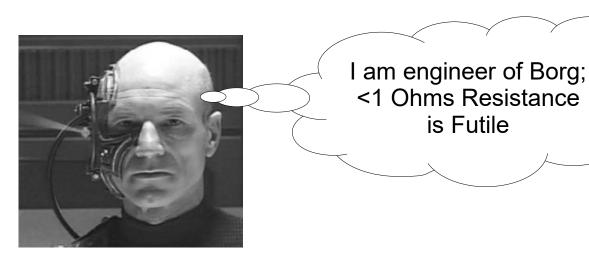
Current

• (Conventional) Current

- -

- Current flow is driven by voltage.
- Current flows from higher voltage to lower voltage (from + to -)

Note: electrons actually flow opposite direction: - to +; It was discovered later that electrons have negative charge

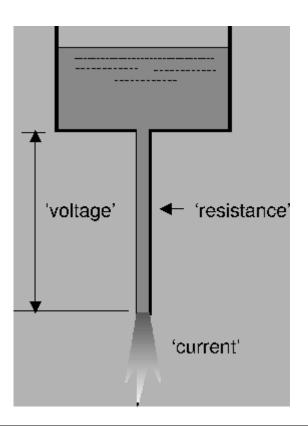

Current		
Symbol	I	
Units	Amps [A]	
Our Usual Range	1A powers BBG; GPIO ~3mA	

Resistance

Resistance

. .

Resistance defined as V / I
 (inferred from the resistance the current sees across a voltage)


Resistance		
Symbol	R	
Units	Ohms [Ω]	
Our Usual Range	100Ω to 10,000Ω	

Pipe Analogy

- Water tank draining water through pipe
 - Voltage: height (higher is higher potential)
 - Current: amount of water flow
 - Resistance: size of pipe
 (bigger pipe gives less resistance)
- Relationship (Ohm's law)

```
V = I * R

V / R = I
```


Ohm's Law Examples: V=IR

1) 1V across 1Ω ; find current

2) 5V across a $1k\Omega$ resistor; find current

3) 2A through 10Ω ; find voltage

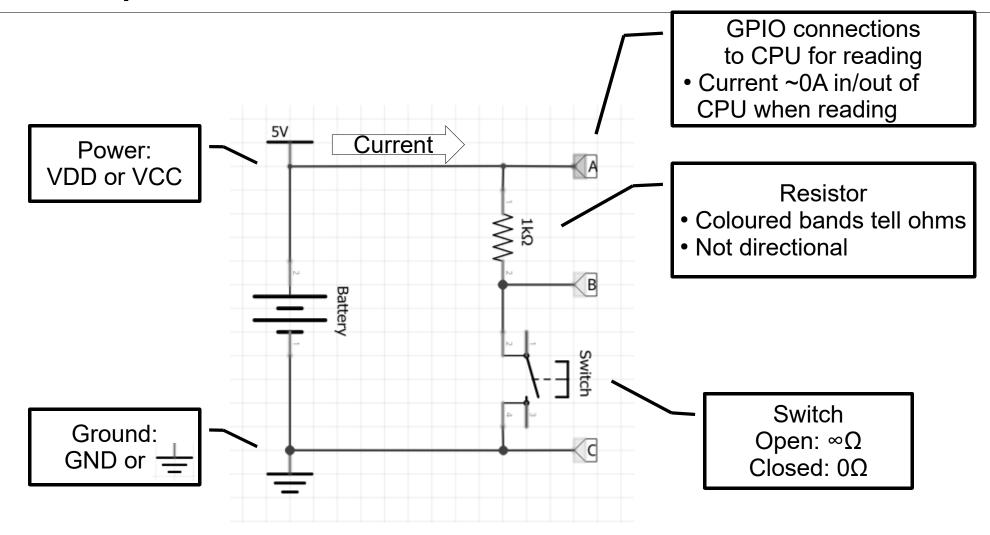
4) 3.3V through 0Ω ; find current

5) 3.3V at 0A, find resistance

Units

- Mega: 1,000,000
 - Mega-ohms: $1,000,000\Omega = 1M\Omega$

- Kilo: 1,000
 - $1.000\Omega = 1k\Omega$ – Kilo-ohms:



- Milli: 1/1,000
 - Milliamps: 0.001A = 1 mA
 - Millivolts: 0.100 V = 100 mV
- Micro: 1/1,000,000
 - Microamps: $1A = 1,000,000 \mu A$
 - $1V = 1,000,000 \mu V$ – Microvolts:

Circuits

Sample Circuit

Solving Circuits

Each components in circuit

. .

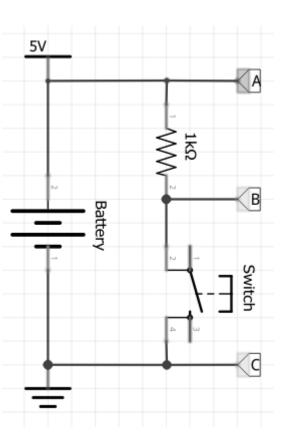
- Wires assumed to be 0Ω
- Sum of all voltages lost in circuit =...

_

- Usual approach to solving a single path circuit
 - 1. Find the voltage of the source
 - 2. Find resistance of the circuit
 - = sum resistances of each series component
 - 3. Solve current

Solving Circuits Examples

5V

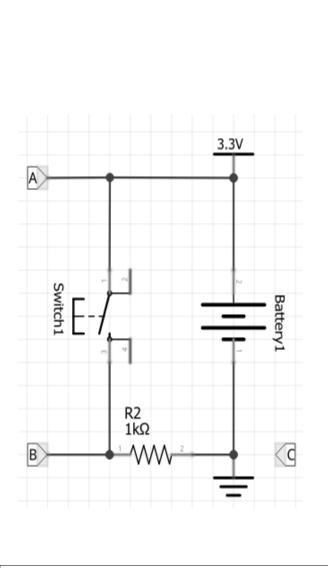

With switch open (not connected), solve:

- Current through switch
- Current through resistor
- A's voltage
- B's voltage
- C's voltage

Solving Circuits Examples (cont)

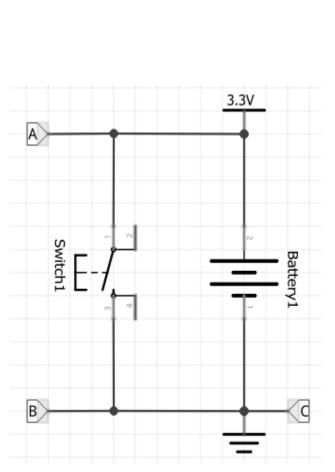
With switch closed (connected), solve:

- Resistance of circuit


Current (through resistor or switch)

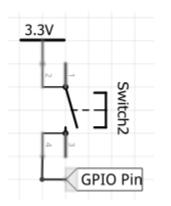
A's voltage

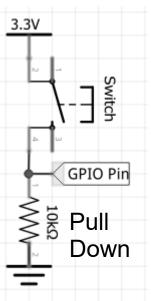
- B's voltage


- C's voltage

Exercise #1

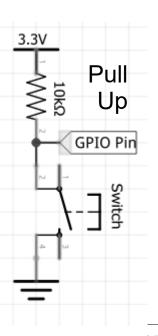
	Switch Closed	Switch Open
I through Resistor		
I through Switch		
V at 'A'		
V at 'B'		
V at 'C'		


Exercise #2


	Switch Closed	Switch Open
I through Switch		
V at 'A'		
V at 'B'		
V at 'C'		

Pull-up / Pull-down

- What does 'GPIO Pin' read when:
 - switch closed? ..
 - switch open? ...



Solution

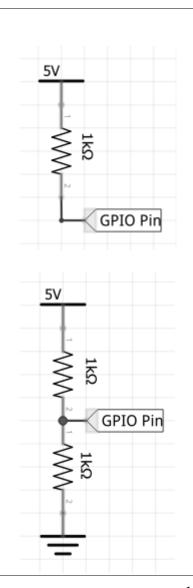
Pull-down resistor: ...

 Pull-up resistor: add large value resistor to 3.3v

Exercise: Smoke and Divider

- If GPIO Pin is an input pin on the BBG, what does this circuit do?
 - Assume 0A current into input GPIO

. .


- -

What does GPIO Pin read?

- -

. .

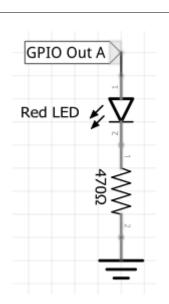
Intuition: ..

LEDs and Breadboards

LED

- LED = Light Emitting Diode
 - LEDs require a current to turn on: the more current, the bright.

Red LED


- Too much current: damage it.
- Details
 - Diodes only allow current to flow one way: in direction of arrow.
 - Don't wire an LED in backwards.
 - We'll treat LEDs as a current device, not affecting V (LEDs have a voltage drop across them of ~0.7V We'll ignore this in this course.)

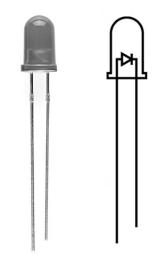
LED (cont)

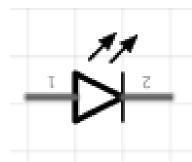
- If 'GPIO Out A' is set to 1 (3.3V), what is current through 'Red LED'?
 - Safe case: Assume no LED voltage drop.

. .

. .

- Current Limiting Resistor
 - Added to reduce current through circuit.
- What resistor should you use if the LED requires
 5mA to turn on? (3.3V source, no LED voltage drop)


. .


. .

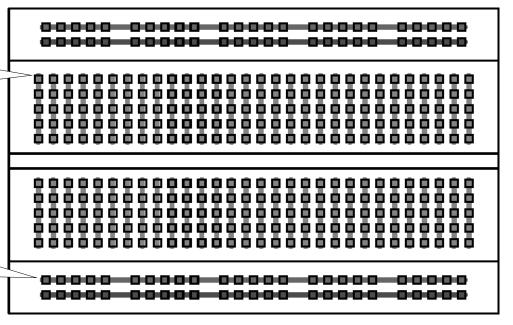
. .

LED wiring

- LEDs must be wired in correct direction to turn on
 - Longer lead (wire) is + side (Anode)
 - Shorter lead (wire) is side (Cathode)
- In reverse, they block all current until voltage exceeds their maximum reverse voltage, at which point the LED could be damaged.

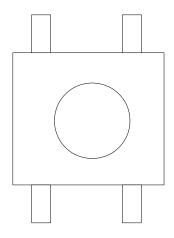
Review Questions

- Suggested circuit drawing questions (try on your own time)
 - Draw a circuit which turns on an LED when you press a button.
 - Draw a circuit which turns on an LED when you set a GPIO pin to high.
 - Draw a circuit which turns on an LED when you set a GPIO pin to low.


Breadboard

- Breadboard used to wire circuits without soldering
 - + and bars on both top and bottom
 - Columns of 5 slots all connected.

 Columns on top half not connected to columns on bottom half.


All 5 slots in this column are connected.

All 25 slots in this bar are connected. (not connected to top one)

Push Button

- Our Push Buttons
 - 4 pins (2 top, 2 bottom)
 - Pressing button shorts (0 ohms) across top pins;
 and across bottom pins.

02 DGND

04 GPIO_39

06 GPIO_35

08 GPIO_67

10 GPIO_68

12 GPIO_44

14 GPIO_26

16 GPIO_46

18 GPIO_65

20 GPIO_63

22 GPIO_37

24 GPIO_33

26 GPIO_61

28 GPIO_88

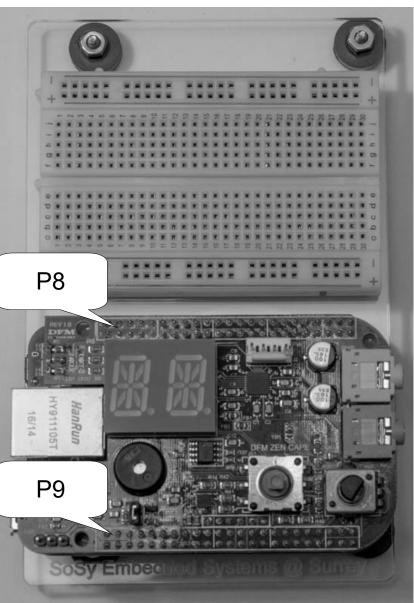
30 GPIO_89

32 GPIO_11

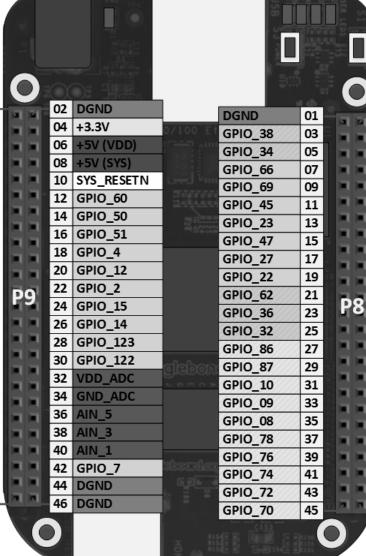
34 GPIO_81

36 GPIO_80

38 GPIO_79


40 GPIO_77

42 GPIO_75

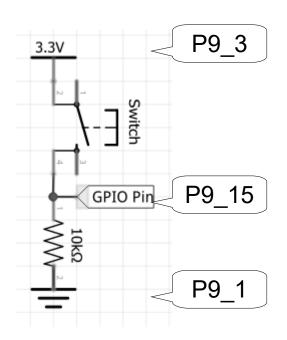

44 GPIO_73

46 GPIO_71

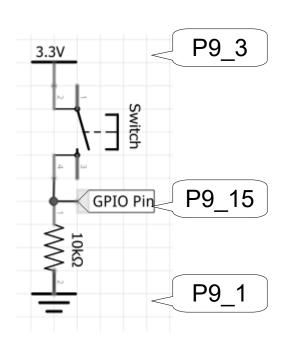
Pins

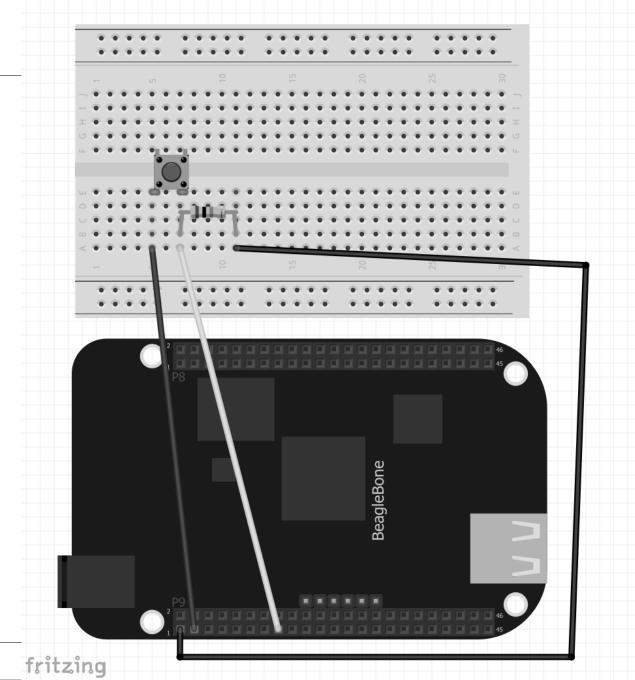
DGND	01
+3.3V	03
+5V (VDD)	05
+5V (SYS)	07
PWR_BUT	09
GPIO_30	11
GPIO_31	13
GPIO_48	15
GPIO_5	17
GPIO_13	19
GPIO_3	21
GPIO_49	23
GPIO_117	25
GPIO_115	27
GPIO_121	29
GPIO_120	31
AIN_4	33
AIN_6	35
AIN_2	37
AIN_0	39
GPIO_20	41
DGND	43
DGND	45

Breadboard Example

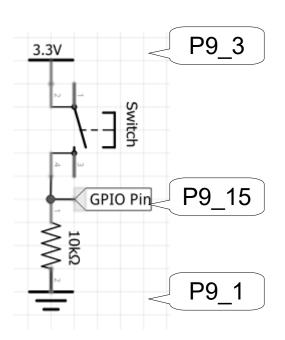

- Wire BBG to read if button is pressed
 - Start by drawing circuit.
 - Then pick BBG pins

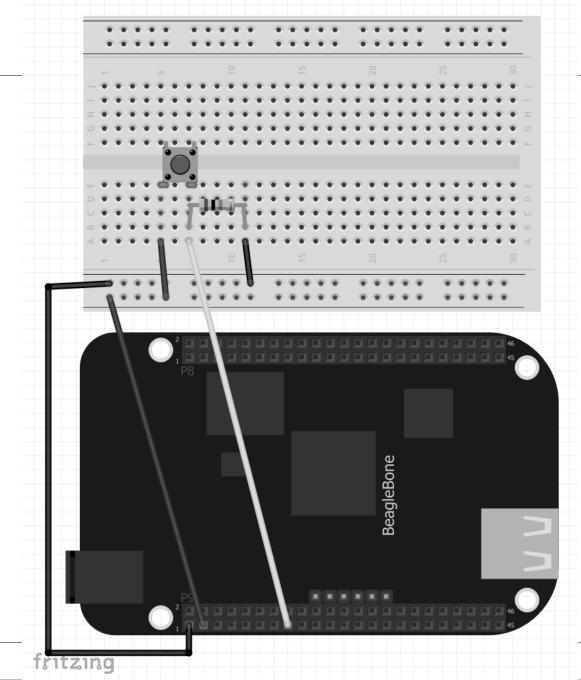
• 3.3V: P9_3 or P9_4


• GPIO Pin: P9_15

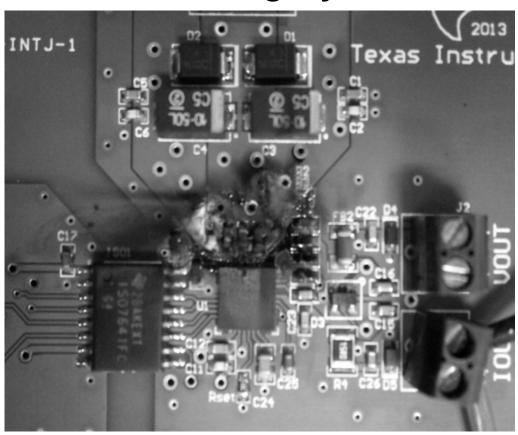

• Gnd: P9_1 or P9_2

- Finally wire up & test
 - (Next slide)




Wiring

Alt. Wiring



Power

- GPIO pins give +3.3V
 - Can source 6mA (current out of pin)
 - Can sink 8mA (current into pin)
- A2D reference gives +1.8V
- USB gives +5V
 - VDD 5V is powered from USB directly
 - SYS_5V is through on-board voltage regulator

How to damage your board

How to fry your BeagleBone

- Draw too much current from 3.3v
 - total current to BBG < 500mA
 - ..
- Over-current GPIO pins
 - Can source 6mA (current out of pin)
 - Can sink 8mA (current into pin)
- Apply too much voltage to CPU pin
 - GPIO [tollerates 0v 3.3v]
 - A2D [tollerates 0v 1.8v]

Other Systems

- Raspberry Pi
 - may tolerate higher voltages if current is low;
 not so with BBG
 - Don't let GPIO go > 3.3V, even at low current
- Arduinos run at 5V
 - Many Arduino peripherals need level shifters to work with BBG's 3.3V GPIO
- 12V Fans
 - It's 12V! Be careful! Use a relay to turn on/off
- Motors
 - Need a motor driver chip to turn drive the motor

Tips

- 1) Draw out your circuit on paper before wiring it.
- 2)Wire your circuit with the power off.
- 3) Double check wiring before powering on!
 - Not as easy as "recompile" to fix HW errors.
- 4) If it does not work, don't just try things till it works.

Summary

- Ohm's Law: V = I * R
 - Solve a circuit by finding resistance across a voltage to solve the current.
- Components
 - Switches: Open or closed
 - LED: current turns on
 - Resistor
- Be mindful of HW limits: don't fry your board!

Skipped Content

```
TODO:
*** ADD LINKS FOR CIRCUIT DESIGN PAGES ***
?? Add HW Demos ??
TODO: ADD
- Photo cell (CdS photoresistor)
- Use of A2D +1.8V ref
TMP36: Analog Temperature [SKIPPED 2017]
      tmp36
    VDD Sig Gnd
    VDD = 3.3V \text{ or } 5V
    Sig = 0V (at -50'C) 1.75V (at 125'C)
    Gnd = conect to "analog ground" for a better signal with no noise
```