
24-2-7 1

Linux (user space)
Debugging

© Dr. B. FraserSlides #8CMPT 433

24-2-7 2

Topics

● How can we find memory problems?

● Cross debugging using GDB and VS Code

● Debugging after a crash with a core file

24-2-7 3

Tracing Memory:
Valgrind, ASan & mtrace

24-2-7 4

C's “Safety”

● C does no memory checking on any of:
– buffer overflows

– dangling pointers

– unfreed memory

– bad pointers

● Need to use extra tools to instrument your program.
– Instrumentation:

..

24-2-7 5

Valgrind

● Valgrind: a suit of debugging & profiling tools
– Runs your application in a virtual CPU,

doing translations for each instruction.

– Adds a significant performance penalty:
20 – 30 times slower.

● Detects memory errors:
– .. (not calling free())

– .. (use after free)

– Read/write outside of allocated block

– ..

● (Does not detect stack memory errors)

24-2-7 6

Valgrind Install

● Install Valgrind on BBB (requires internet access)
– Our board’s Valgrind (image 2018-01-28) is broken;

so install valgrind from newer Debian release.
(dependency incorrect, but valgrind works)

See debugging guide for details.

● Cross-compile your application with -g option.

● Run Valgrind:
(bbg)$ valgrind ./mybadapp
(bbg)$ valgrind --leak-check=full \

--show-reachable=yes ./mybadapp

24-2-7 7

Valgrind Demo
(bbg)$ valgrind --leak-check=full --show-reachable=yes ./memleaker

.. normal program output...

==1503== HEAP SUMMARY:
==1503== in use at exit: 57,344 bytes in 56 blocks
==1503== total heap usage: 57 allocs, 1 frees, 58,368 bytes allocated
==1503==

==1503== 57,344 bytes in 56 blocks are definitely lost in loss record 1 of 1
==1503== at 0x48348EC: malloc (vg_replace_malloc.c:263)
==1503== by 0x104E7: intToString (memleaker.c:16)
==1503== by 0x1052B: showConvert (memleaker.c:24)
==1503== by 0x10573: main (memleaker.c:36)
==1503==
==1503== LEAK SUMMARY:
==1503== definitely lost: 57,344 bytes in 56 blocks
==1503== indirectly lost: 0 bytes in 0 blocks
==1503== possibly lost: 0 bytes in 0 blocks
==1503== still reachable: 0 bytes in 0 blocks
==1503== suppressed: 0 bytes in 0 blocks

24-2-7 8

Valgrind Sample

(bbg)$ valgrind ./memabuser
– funWithVariables(): uninitialized memory

– funWithHeap(): overflow, double free

– funWithStack(): Misses error!

– funWithPointers(): Misses error!

(bbg)$ valgrind --leak-check=full \
--show-reachable=yes ./memleaker2

– Output part:
==1561== 1 bytes in 1 blocks are definitely lost in loss record 1 of 11
==1561== at 0x48348EC: malloc (vg_replace_malloc.c:263)
==1561== by 0x10753: main (memleaker2.c:48)

Demo this one.

24-2-7 9

Valgrind (cont)

● A well-behaved program should
..

– i.e., should have nothing “still reachable”

● If you forget to call pthread_join() on a thread it leaves
some memory un-freed.

– Should join on all spawned threads or else get:

● Can find some stack/globals problems with:
(bbg)$ valgrind --tool=exp-sgcheck ./mybadapp

– Does not catch all errors.

136 bytes in 1 blocks are possibly lost in loss record 1 of 1
 at 0x4832C44: calloc (vg_replace_malloc.c:566)
 by 0x40122CB: _dl_allocate_tls (dl-tls.c:297)
 by 0x4855C73: pthread_create@@GLIBC_2.4 (allocatestack.c:585)
 by 0x108D7: main (demo_thread.c:36)

24-2-7 10

Valgrind Errors to Ignore

● Valgrind may find errors which originate in code libraries;
you may usually ignore these.

● Turn off -pg flag to remove some warnings.

● If getting errors with __udivmoddi4:

copy code to target and build on target with its gcc.

==832== 8 bytes in 1 blocks are still reachable in loss record 1 of 8
==832== at 0x4840AA8: calloc (vg_replace_malloc.c:623)
==832== by 0x489573B: snd_config_update_r

 (in /usr/lib/arm-linux-gnueabihf/libasound.so.2.0.0)

==852== Use of uninitialised value of size 4
==852== at 0x12BB2: __udivmoddi4 (in ./myGoodApp)

24-2-7 11

Timing Bugs

● Heisenbug
– A bug which appears/disappears only when you are

debugging

● Valgrind significantly changes the runtime
performance of your application

– May cause false timing related bugs related to
performance or driving real-time hardware

– Your code must be threadsafe:
even if the timing changes significantly, your code
must perform the correct computations and steps

24-2-7 12

Address Sanitizer (ASan)

● GCC and Clang support
Address Sanitizer:

– ..

● Similar to valgrind except
– It’s fast!
Only x2 slowdown vs x20

– It checks more types of
errors

– It requires compile-time
change
(cannot be run on
precompiled binary)

ASan catches:
● Use after free
● Heap buffer overflow
● Stack buffer overflow
● Global buffer overflow
● Use after return
● Use after scope
● Initialization order bugs
● Memory leaks

24-2-7 13

ASan use

● Enable at compile time in CMakeLists.txt:

● Bad Code

void foo() {
 int data[3];
 for (int i = 0; i <= 3; i++) {
 data[i] = 10;
 printf("Val: %d\n", data[i]);
 }
}

Enable address sanitizer
(Comment this out to make your code faster)
add_compile_options(-fsanitize=address)
add_link_options(-fsanitize=address)

24-2-7 14

ASan Error Report

24-2-7 15

mtrace

● If Valgrind's overhead is too high, can use mtrace:
– ..

● Usage:
– In C code:

#include <mcheck.h>
void main() {

mtrace(); // Call to start trace; can be anywhere
}

– On target, set environment variable for trace file:
(bbg)$ export MALLOC_TRACE=/tmp/mallocTrace.txt

– Run the program (writes mallocTrace.txt):
(bbg)$./badapp

– Analyze results (on host or target):
(host)$ mtrace badapp /tmp/mallocTrace.txt

24-2-7 16

mtrace example

(bbg)$ export MALLOC_TRACE=/tmp/mallocTrace.txt

(bbg)$./memleaker
... program's normal operation....

(bbg)$ mtrace ./memleaker ../mallocTrace.txt
- 0x00012008 Free 58 was never alloc'd 0xb6f7495d

Memory not freed:

 Address Size Caller

0x022ec7e8 0x400 at 0x4b25c9

0x022ecbf0 0x400 at 0x4b25c9

0x022ecff8 0x400 at 0x4b25c9

Note: Current BBG image
seems not to resolve address

to line of code!

24-2-7 17

GDB

24-2-7 18

GDB & Debug Symbols

● GDB: GNU debugger
– Able to read structure of an executable and

interactively step through it.

– ..
“Symbols” includes:

● Symbol names: function, variables, parameters

● Symbol types: return, variable, parameter types

● File & line numbers for each instruction.

● Build app with debug symbols:
– GCC: Use -g option:

arm-linux-gnueabihf-gcc -g -std=c99 foo.c -o foo

24-2-7 19

......

The Big Picture

● On Target
(bbg)$ gdbserver localhost:2001 helloWorld

● On Host
(host)$ gdb-multiarch -q helloWorld

Host Target

GDB Server
(gdbserver)

GDB
(gdb-multiarch)

helloWorld
Graphical Debugger
(VS Code / Eclipse)

Network

Compiled
for ARM

24-2-7 20

GDB Commands:

● Connect: target remote 192.168.7.2:2001

● View Source:..

● Breakpoints:..
break main, break test.c:7

● Stepping: run, continue
step (into), next (over)

 ..
print <expr>

● Functions: info args, info local,
 ..

● Quit: quit
! Demo badmath.c

24-2-7 21

VS Code Debugging

● See the Debugging guide for step-by-step on how to
setup VS Code (and Eclipse) for cross-debugging.

! Demo VS Code cross debugging badmath.c

24-2-7 22

Debugging after a crash:
Core Dumps

24-2-7 23

Core Dump

● When a program hits a runtime error, Linux can
store its complete state to a core file

– Enable core file generation:
(bbg)$ ulimit -c unlimited

(bbg)$ ulimit -a // Display's limit

– User can generate core file and send it to
developers for later debugging.

24-2-7 24

Debugging with Core

● Run program on target to generate core file:
(bbg)$./segfaulter

– When program crashes, it creates a core file in
current directory.

● Copy to NFS (if not there already)

● On host, open core in cross-debugger:
(host)$ cd ~/cmpt433/public/

(host)$ gdb-multiarch ./segfaulter core

! Demo: segfaulter.c

May need to run
in /tmp if core file

is 0 bytes.
chhmod a+r on
core if cannot
read on host.

24-2-7 25

Stripping Symbols

● Debug symbols help you debug a program.

● However, they:
– Make the binary bigger

– Give away information about your program.

● Can remove the debug symbols after compile:
(host)$ cp myApp myApp2

(host)$ arm-linux-gnueabihf-strip myApp2

– Copy myApp2 to target (it's smaller)!

– When debugging core files generated by a stripped
myApp2 on target, can use un-stripped myApp with
symbols on host.

24-2-7 26

Summary

● Tracing memory:
– Valgrind for a deep check on memory use

– mtrace for an efficient check on dynamic allocation

● GDB:
– target runs gdbserver

– host runs gdb-multiarch

● GDB Commands:
– target remote, list, info b, b main, continue, bt, step, next,

info args, up, down, quit

● Can debug in text or via an IDE

● Debug after a crash with a core file

● Strip a binary to remove symbols

