
25-1-27 1

Voltage,
ADC,
Piece Wise Linear,
Noise

© Dr. B. FraserSlides #7CMPT 433

25-1-27 2

Topics

● What form are real-world signals?

● How can a computer read an analog signal?

● How can we approximate functions?

25-1-27 3

Signals in the “Real World”:
Voltage

25-1-27 4

Voltage

● Real world analog signals are often changes in
voltage:

– Ex: Microphone encodes sound into voltage levels

Audio: Zoomed in Audio: Zoomed out

25-1-27 5

..

Voltage Ranges

0V: Ground

3.3V: Many circuits
(BeagleBone)

5.0V: Some circuits
(Arduino)

These are all DC voltage
(Direct Current)

Out of the wall comes AC Voltage
(Alternating Current)

25-1-27 6

Electronics Components (“Parts”)

● Many electronics components run on, manage, and
work with voltages.

Voltage Regulator:
Converts input voltage
to stable output voltage.

Stable

May
fluctuate

a little

Joystick:
Moving the stick
adjusts the output
voltage on V

out
.

V
out-YGnd

3.3V

V
out-X

Light Sensor:
The more light,
the lower the
voltage on V

out

V
outGnd 3.3V

GndGnd

3.3V4 to 8V

Input Output

25-1-27 7

Reading a Voltage

● How can we read a signal into the computer?
– Real world is analog voltages; computer are digital.

– We need an analog to digital converter (ADC)

● Sometimes called an A2D (Analog “to” Digital)

● Zen Hat has a 12 bit ADC:
– It reads a voltage and gives a number

between 0 and 212-1 (=4095)

– It can sample voltages between 0V and 3.3V

● It is easily damaged by higher voltages!

25-1-27 8

Quantization & Sampling

● Quantization:
Since it has 4096 readings over 3.3V

– Resolution of a single bit is:
1.8V / 4096 = 0.00081V = 0.81 mV

This is pretty good for most applications!

● Sample Rate:
How fast the ADC can read samples

– Need 44100 Hz (44.1kHz) for CD audio

– Zen Hat has a TLA2024:
can sample at 3300Hz (3.3kHz); can’t do audio!

– Some applications (reading a POT for volume) may
need low sample rates (~10Hz)

25-1-27 9

BYAI DAC Demo for POT

● List I2C ports:
(byai)$ ls /dev/i2c*

(byai)$ i2cdetect -l

● View devices on I2C-1
(byai)$ i2cdetect -y -r 1

● Display the internal memory of an I2C device
(byai)$ i2cdump -y 1 0x48 w

● Continuously sampling channel 0 (Joystick Y):
(byai)$ i2cset -y 1 0x48 1 0x83C2 w

● Read voltage
(byai)$ i2cget -y 1 0x48 0x00 w

– Byte order 0xAB12 --> 0x12AB; then shift right 4 (12 bits)

25-1-27 10

Approximating Functions:
Piece Wise Linear

25-1-27 11

Function Approximations

● Real world functions can be hard to approximate.
– Some approximations are computationally

expensive (high-order polynomials, cubic-spline, ..)

– Piecewise Linear (PWL)
Approximate a function with a series of lines.

As you discharge a battery,
its voltage drops.
(DoD is Depth of

Discharge)

25-1-27 12

Piece Wise Linear

● Pick good points on the function f(x) to capture its
shape

– can be evenly spaced, or

– can be specially selected points

● Between adjacent points, draw a straight line.

● The approximation f'(x)
is the straight lines.

25-1-27 13

Computing Piecewise Linear

● Given an input value s, use points on either side

● Compute f'(s) by solving the point on the line

a b

n

m
Actual function

Linear approx.

s

f'(s)

s

25-1-27 14

Understanding Piecewise Linear

a b

n

m

s

f'(s)

25-1-27 15

Piecewise Linear Details

● Some extra notes:
– If a reading is < min or > max data point,

clip it to min & max.

– Enter the points into a program as two arrays:

– Make sure to use the correct data types for your
calculation (possibly floating point).

– Watch for array out of bounds!

#define PIECEWISE_NUM_POINTS 11
const float PIECEWISE_DoD[] ={ .0, .1,8, .9, 1};
const float PIECEWISE_V[] ={12.6, 12.3, ... 11.2, 11.1, 10};

25-1-27 16

Noise
Noise
Noise

25-1-27 17

Noise

● Real world data is often 'noisy'
– each sample has..

causing it to differ from the correct real-world value.

ADC Sample = (precise real-world value) + (noise)

11

11.1

11.2

11.3

11.4

11.5

11.6

11.7

11.8

11.9

12

10%20%30%40%50%60%70%80% SoC

Module Voltage to SoC

Adj V

25-1-27 18

Problem with Noise

● A noisy signal’s fluctuations may be:
– changes in the real signal

– noise

● Ex: Turn off phone when battery is empty (3V)

– What happens when noise spike gives you 2.99V
reading when battery actually at 3.10V?

static void powerDownIfBatteryDead() {
if (batteryVoltage < 3.0) {

powerDown();
}

}

What could
go wrong?

25-1-27 19

Tolerating Noise:
N Samples Past Threshold

● An idea to tolerate some noise:..

● Ex: Power off if 5 consecutive samples are less than 3V:

static double batteryVHistory[5];
static void powerDownIfBatteryDead() {

for (int i = 0; i < 5; i++) {
if (batteryVHistory[i] >= 3.0) {

return;
}

}
powerDown();

}

25-1-27 20

Tolerating Noise: Hysteresis

● State machine should be stable:..

– Problematic Example:
Battery-saver when State of Charge < 30%

● Problem?
..

static bool inLowPower = false;
static void manageLowPowerState() {

if (batterySoC < 30) {
inLowPower = true;

} else {
inLowPower = false;

}
}

..

25-1-27 21

Hysteresis Solution

● A solution:
..

static bool inLowPower = false;
static void manageLowPowerState() {

// Enter
if (batterySoC < 30) {

inLowPower = true;
}
// Exit (5% SoC Hysteresis)
if (batterySoC > 35) {

inLowPower = false;
}

}

25-1-27 22

Noise Filters

25-1-27 23

Simple Moving Average

● Rather than tolerating noise,..

● Maintain buffer of previous N samples

● Note: Must also handle non-full buffer.

static double batteryVFiltered = 0;
static double samples[10];
static int nextIdx = 0;
static void getNewBatetryV() {

// Sample
samples[nextIdx] = readADCVoltage();
nextIdx = (nextIdx + 1) % 10;

// Filter
batteryVFiltered = average(samples, 10);
//batetryVFiltered = median(samples, 10);

}
static double average(double *data, int numValues) {...}

25-1-27 24

Noise Example

0 1 2 3 4 5 6 7 8 9 10

-1.5

-1

-0.5

0

0.5

1

1.5

Signal and Noise

f-pure(x)

Noise

f(x)

Time

S
ig

n
a

l
V

a
lu

e
 [
V

]

25-1-27 25

Simple Moving Average Effectiveness

0 1 2 3 4 5 6 7 8 9 10

-1.5

-1

-0.5

0

0.5

1

1.5

Moving Average

f(x)

Avg, N=3

Avg, N=10

Med, N=3

Med, N=10

Time

S
ig

n
a

l
V

a
lu

e
 [

V
]

.. ..Why is N=10
plots shifted? Is averaging or median filtering better?

When might median be clear winner?

25-1-27 26

Exponential Smoothing

● Simple moving average equally weights all samples,
..

● Exponential Smoothing Details
– Let s

n
 be the Nth sample from the ADC

Let v
n
 be the Nth filtered value

Let a be a weighting value between 0 and 1

● Smoothed Data Points (v
n
)

v
0
 = s

0

v
n
 = a * s

n
 + (1 - a) * v

(n-1)

25-1-27 27

Exponential Smoothing Intuition

● s
n
 is the Nth sample from the ADC

v
n
 is the Nth filtered value

a is a weighting value between 0 and 1

● Smoothed Data Points (v
n
)

v
0
 = s

0

v
n
 = a * s

n
 + (1 - a) * v

(n-1)

● Intuition
– a = 1: 100% weight on instantaneous ‘now’ sample

(filtering disabled)

– a = 0.1: Very heavy weight on old data, not much on
new data (average over very long time frame)

25-1-27 28

Exponential Smoothing Effectiveness

0 1 2 3 4 5 6 7 8 9 10

-1.5

-1

-0.5

0

0.5

1

1.5

Exponential Smoothing

f(x)

a=0.5

a=0.3

a=0.2

Time

S
ig

n
a

l
V

o
lt
a

g
e

 [
V

]

25-1-27 29

Summary

● Many sensor generate analog voltage signals.
– Be careful that signal is in correct voltage range!

● Zen Hat can sample voltages between 0 and 3.3V
– 12-bit ADC: digital values between 0 and 4095

● Piecewise Linear approximates functions
– Given a reading (on the X axis),

use the selected points and straight lines to
approximate desired value (on the Y axis)

● Noise adds errors to samples
– Tolerate nose with hysteresis and filter thresholds

– Filter with simple moving average or exponential
smoothing.

