
24-1-26 1

Linux Programming

© B. FraserSlides #6CMPT 433

24-1-26 2

Topics

1) How can we do multitasking?

2) How can our multiple tasks communicate?

3) How can we communicate over the network?

24-1-26 3

Concurrency:
Processes & Threads

24-1-26 4

Processes: fork() / exec__()

● Each process has a separate..

● fork():..

● exec__(): replaces current process with an executable file.

 pid_t child_pid = fork();
 if (child_pid != 0)

printf ("Parent process: id %d\n", (int) getpid());
 else {

printf ("Child process: id %d\n", (int) getpid());

// Exchange child for executing /bin/ls
char *args[] = {"/bin/ls", "-l", "/dev/tty", (char *) 0};
execv("/bin/ls", args);

printf("Won't see this!\n");
 }

= demo_fork.c

...

24-1-26 5

Threads

● All threads of a process..

● Thread function:
void *myThreadFn(void *args)
{

// Do stuff
return NULL;

}

● Call:
– pthread_t id;

pthread_create(&id, NULL, &myThreadFn, NULL);

● Wait till thread finishes (and cleans up some memory):
– pthread_join(id, NULL);

● #include <pthread.h>

! demo_thread.c

Direct access to
shared (global)

variables.

Can be void** to
hold return value

from thread function

Thread
attributes

void*
Arguments

..

24-1-26 6

Race Case

● Race case
if a memory location (a global variable) is..

– What is the value of count after executed as two threads?

– What helps? volatile? static?

#define MAX 1000000
long long count = 0;

void* foo(void* args)
{

for(long long i = 0; i < MAX; i++) {
count++;

}
return NULL;

}

COUNT is: 1107469

Off by: 892531

24-1-26 7

_Atomic

● ..
– Add _Atomic to a type to

make updates atomic
(including ++)

#define MAX 1000000
_Atomic long long count = 0;

void* foo(void* args)
{

for(long long i = 0; i < MAX; i++) {
count++;

}
return NULL;

}

COUNT is: 2000000

Primitives
 _Atomic int count;
 _Atomic unsigned char ch;

Pointers
 _Atomic long long *pValue;

Works On

Structs / Unions / Arrays
typedef struct {

long count;
} sData;
_Atomic sData bad;
...

bad.count++;

Does Not Work On

Structs Fields
typedef struct {

_Atomic long count;
} sData;
sData data;
...

data.count++;

But Does Work On

= demo_atomic.c

Bad

24-1-26 8

<stdatomic.h>

● <stdatomic.h> defines some useful types
– Nothing special, just for convenience

typedef _Atomic _Bool atomic_bool;

typedef _Atomic char atomic_char;

typedef _Atomic int atomic_int;

typedef _Atomic unsigned int atomic_uint;

typedef _Atomic long atomic_long;

typedef _Atomic unsigned long atomic_ulong;

typedef _Atomic long long atomic_llong;

typedef _Atomic unsigned long long atomic_ullong;

typedef _Atomic __CHAR16_TYPE__ atomic_char16_t;

typedef _Atomic __CHAR32_TYPE__ atomic_char32_t;

typedef _Atomic __INTMAX_TYPE__ atomic_intmax_t;

typedef _Atomic __UINTMAX_TYPE__ atomic_uintmax_t;

...

24-1-26 9

..

Thread Synchronization

● Mutex:
– Control access to critical sections.

–

● Create:
pthread_mutex_t myMutex =
 PTHREAD_MUTEX_INITIALIZER;

● Critical Section:
pthread_mutex_lock(&myMutex);
{

// Do critical stuff here!
}
pthread_mutex_unlock(&myMutex);

!demo_mutex.c

static int data[SIZE];
void foo()
{

int sum = 0;
pthread_mutex_lock(&dataMutex);
{

for (int i = 0; i < SIZE; i++) {
sum += data[i];

}
}
pthread_mutex_unlock(&dataMutex);
printf("Sum of elements: %d\n", sum);

}

IO outside of
critical section.

24-1-26 10

Thread considerations

● Tips for Critical Sections:
– Keep critical sections short:

avoid blocking other threads.

– Calculate values with temporary variables;
then update shared variables in critical section.

– Use extra {...} to highlight the critical section.

– Always unlock!

● Compiling (linking)
arm-linux-gnueabihf-gcc -Wall -g demo_thread.c \

-o demo_thread -pthread

24-1-26 11

Communicating Between Threads

● Code in different threads can interact in many ways
– ..

Use to signal events between threads.

– ..
Accessible between threads
(but may need to be atomic or protected by critical
sections).

– .. (next)
Can push data between threads or processes.

24-1-26 12

Pipes

24-1-26 13

Basics

● Pipe:
–

– Good for inter-thread and inter-process
communication.

● Needed Functions:
– pipe() to create file descriptors for read and write

ends of pipe.

– fdopen() to open the pipe (from descriptor)

– fprintf() to write (or other functions)

– fgets() to read [blocking] (or other functions)

– close() to close the file descriptor.

24-1-26 14

Pipe Code

!demo_pipe.c

// Writer: Convert the write file descriptor
// to a FILE object
FILE* streamW = fdopen (fds[1], "w");
fprintf (streamW, "Hello World!\n");
fflush (streamW);
close (fds[1]);

// Reader: Convert read file descriptor to a FILE object.
FILE* streamR = fdopen (fds[0], "r");

// Read until end of the stream.
char buffer[1024];
while (!feof (streamR) && !ferror (streamR)

&& fgets (buffer, sizeof (buffer), streamR) != NULL) {
printf("%s", buffer);

}
close (fds[0]);

// File descriptors for pipe ends
int fds[2];
// Create a pipe.
pipe (fds);

Likely fork() or
pthread_create()

24-1-26 15

popen() = Fork & pipe

● Execute a shell
command using
a pipe for output
[or input].

#include <stdio.h>
#include <unistd.h>
#include <stdlib.h>
int main()
{

// Execute the shell command (output into pipe)
FILE *pipe = popen("ls -l /dev/tty*", "r");

// Dump contents of pipe to the screen.
char buffer[1024];
while (!feof(pipe) && !ferror(pipe)) {

if (fgets(buffer, sizeof(buffer), pipe) == NULL)
break;

printf("--> %s", buffer);
}

// Close pipe, check program’s exit code
int exitCode = WEXITSTATUS(pclose(pipe));
if (exitCode != 0) {

printf("program failed: %d\n", exitCode);
}
return 0;

}
= demo_popen.c

24-1-26 16

Sockets:
Bidirectional network communication

24-1-26 17

Socket Intro

● Socket
–

– Used to send data between processes on the same
computer, or across the network.

● Like a pipe, but works across a network too.

● Use
– Server:..

● Usually at a known port number.

● When data received, it knows client IP and port.

– Client:..

● May also wait for a reply.

24-1-26 18

Socket Types

● Connection (TCP):
– in order delivery, automatic retransmission

– single connection between specific host and server.

– Better for long term connections with large amount
of data (fetch web-page).

● Datagram (UDP):
– no persistent connection (connectionless):

..

– Better for short, single packet messages.

● See section 5.5 of Advanced Linux Programming for
socket examples.

I know a great joke about UDP,
but I’m not sure anyone would get it.

24-1-26 19

UDP Constants

● FYI: Here are what some of the socket constants mean:
– sockaddr_in: Socket Address for INternet (struct)

– sin: Socket INternet, such as in sin_family

– AF_INET: Address Family, Internet (IP v4)

– PF_INET: Protocol Family, Internet (IP v4)

– SOCK_DGRAM: Socket, user Datagram protocol (UDP)

(You don’t need to memorize these).

24-1-26 20

...

...

...

...

UDP Server Programming (1/3 - Init)

● Address Structure
#define MAX_LEN 1024
#define PORT 22110

struct sockaddr_in sin;
memset(&sin, 0, sizeof(sin));
sin.sin_family = AF_INET;
sin.sin_addr.s_addr = htonl(INADDR_ANY);
sin.sin_port = htons(PORT);

● Create and bind to socket
int socketDescriptor = socket(PF_INET, SOCK_DGRAM, 0);
bind (socketDescriptor, (struct sockaddr*) &sin, sizeof(sin));

C has numerous socket address structures:
sockaddr (generic), sockaddr_in (internet), ...

bind() accepts a generic sockaddr and decides what to do
based on the family field (shared by all sockaddr structs).

_in means internet

Connection may be from network

ntonl = host to network long;
htons = host to network short

24-1-26 21

UDP Server Programming (2/3 - Read)
● Receive Data

struct sockaddr_in sinRemote;
unsigned int sin_len = sizeof(sinRemote);
char messageRx[MAX_LEN];

int bytesRx = recvfrom(socketDescriptor,
messageRx, MAX_LEN - 1, 0,
(struct sockaddr *) &sinRemote, &sin_len);

// Null terminated (string):
messageRx[bytesRx] = 0;

printf("Message received (%d bytes): '%s'\n",
bytesRx, messageRx);

Client's data written
into messageRx string

...

sinRemote is output parameter;
sinLen is in/out parameter.

..

...

What if recvfrom filled the
buffer 100%? Overflow?

...

24-1-26 22

UDP Socket Programming (3/3 Reply)

● Create Reply
// Watch for buffer overflow!
char messageTx[MAX_LEN];
snprintf(messageTx, MAX_LEN, "Hello %d\n", 42);

● Send Reply
sin_len = sizeof(sinRemote);
sendto(socketDescriptor,

messageTx, strlen(messageTx),
0,
(struct sockaddr *) &sinRemote, sin_len);

● Close socket (when done)
close(socketDescriptor);

– May take a few seconds for OS to finish closing.

! demo_udpListen.c

Have client's IP address
and port from receiving

the message.
...

24-1-26 23

Byte Order

●
– 2 bytes of 0xa1cf transmitted as 0xa1, 0xcf

– Big-endian = network byte order:..

– x86 is little-endian; ARM is bi-endian (supports both)

● Never assume your processor is network order:
use host-to-network to adjust:

uint32_t htonl(uint32_t hostlong);
uint16_t htons(uint16_t hostshort);
uint32_t ntohl(uint32_t netlong);
uint16_t ntohs(uint16_t netshort);

#include <netdb.h>

short toTransmit1 = htons(myVal1);
long toTransmit2 = htonl(myVal2);

Prototypes Example

24-1-26 24

Summary

● Use processes for coarse multitasking:
– Use fork() and exec__().

– Example: A server and a client with well defined
separate roles.

● Use threads for fine-grained multitasking.
– Use pthread_create(), pthread_join

– Use _Atomic for shared variables

– Mutex with pthread_mutex_t: pthread_mutex_lock(),
pthread_mutex_unlock().

● Pipes for inter process/thread communication.

● Sockets for network communication.

