
24-01-15 1

Launching & Building
Embedded Software

U-Boot,
Cross Compiling,

Make, CMake
& Editors

© Dr. B. FraserSlides #4CMPT 433

24-01-15 2

Topics

1) What software components run on the board?

2) How can we build our software?

3) How can we edit files via just text console?

24-01-15 3

Software Components

Time during Boot

U-Boot

Das U-Boot:
Bootloader to...

Root
File System

Root File System (RFS):
Contains all...

ls, ifconfig, helloWorld

Kernel

Linux Kernel:
Core Linux kernel for process

control, memory, IO, scheduling.

24-01-15 4

Boot Select

U-Boot

eMMC

Kernel

Root
File System

U-Boot

uSD Card

Kernel

Root
File System

How to recover if
eMMC image

corrupts?

24-01-15 5

Servers & Directories

$HOME/cmpt433/work

$HOME/cmpt433/public /mnt/remote

TargetHost

● Work (private) Directory
–

Ex: .c, .h, filelists.txt, makefile

● Public Directory
– Holds files to...

– Unprotected by passwords!
Only for compiled code.

24-01-15 6

Cross-compile demo

● Compile on host for target
(host)$ arm-linux-gnueabihf-gcc hello.c -o hello

● Check compiled file
(host)$ readelf -h hello

● Run on board via NFS (one line each)

(bbg)$ busybox mount -o tcp -t nfs -o nolock \
192.168.7.1:/home/brian/cmpt433/public \

 /mnt/remote

(bbg)$ cd /mnt/remote/
(bbg)$./hello

24-01-15 7

Building Software With

Make & CMake

24-01-15 8

Makefile Basics

● Makefiles are
..

– Name your script Makefile

– Build a specific make-target with:..
(host)$

– Build default make-target with:
(host)$ make

● Examples
(host)$ make clean

(host)$ make all

24-01-15 9

...

...

...

...

...

Simple Makefile

Simple Makefile for building Hello world!

CC_C = arm-linux-gnueabihf-gcc
CFLAGS = -Wall -g -std=c11 -D _POSIX_C_SOURCE=200809L -Werror

app:
$(CC_C) $(CFLAGS) helloWorld.c -o hello
cp hello ~/cmpt433/public/myapps/

clean:
rm hello

Define custom variables
for later use.

Targets of form
targetName:

Command(s) for this target.

clean a common target
to remove all build files.

24-01-15 10

..

..

..

More Makefile
OUTFILE = helloWorld
OUTDIR = $(HOME)/cmpt433/public/myApps

CROSS_COMPILE = arm-linux-gnueabihf-
CC_C = $(CROSS_COMPILE)gcc
CFLAGS = -Wall -g -std=c11 -D _POSIX_C_SOURCE=200809L -Werror

help:
@echo "Build Hello World program for BeagleBone"
@echo "Targets include all, app, and clean."

all: app nestedDir done

app:
$(CC_C) $(CFLAGS) helloWorld.c -o $(OUTDIR)/$(OUTFILE)
ls -l $(OUTDIR)/$(OUTFILE)

nestedDir:
make --directory=myNestedFolder

done:
@echo "Finished building application."

clean:
rm $(OUTDIR)/$(OUTFILE)

Setup output info once,
used twice.

24-01-15 11

..

Compiler Flags

OUTFILE = factorial
OUTDIR = $(HOME)/cmpt433/public/myApps

CROSS_COMPILE = arm-linux-gnueabihf-
CC_C = $(CROSS_COMPILE)gcc
CFLAGS = -Wall -g -std=c11 -D _POSIX_C_SOURCE=200809L -Werror

..... rest of makefile omitted...

Debug
symbols

Explicit POSIX support (for
nanosleep() function).

Warnings as
errors.

24-01-15 12

CMake

● CMake =..
– Manage software build process

..

– Supports intelligently recompiling only the files that changed

– CMake Scripts:
Describe the build process: CMakeLists.txt

Can have multiple scripts:
one to build each part, one to combine, etc.

● CMake is a Meta Build System
1)CMake processes CMakeLists.txt files to..

2)Use GNU Make to build the software using those Makefiles

24-01-15 13

Anatomy of CMakeLists.txt

Minimum version. Run on the host.
cmake_minimum_required(VERSION 3.18)

Project info
project(
 SimpleCMakePrj
 VERSION 1.0
 DESCRIPTION "Simple demo of CMake"
 LANGUAGES C
)

Compiler options
set(CMAKE_C_STANDARD 11)
add_compile_options(-Wall -Werror -Wpedantic -Wextra)

add_executable(simple_cmake
 src/main.c src/funstuff.c
)

Many commands take
key-value pair:
VERSION 2.80

Generate this executable
(1st arg)

using these source files

Lowest CMake version
that will build our system

(on host).

Info about project:
name, version,

necessary compilers, etc.

CMakeLists.txt Required Elements

24-01-15 14

Running CMake - Terminal
● Regenerate build/ folder and makefiles:

(host)$ cmake -S . -B build

● Build (compile & link) the project
(host)$ cmake --build build/

● Clean up temporary build folder (when needed)
(host)$ rm -rf build/

24-01-15 15

Running CMake - VS Code’s Addon

● CMake Tool addon loaded with project with a CMakeLists.txt

● Select a Toolchain via different..
"A kit encompasses project-agnostic and configuration-
agnostic information about how to build code." 1

– Specifies compiler toolchain and version

– We'll have one for native, one for cross-compile
(Use “unspecified” to build natively)

– Addon scans host system for available toolchains

● Building
– Generate then

run makefiles:

– Run makefiles: Ctrl + Shift + B
Terminal > Configure Default Build Task... > CMake:Build

1. https://vector-of-bool.github.io/docs/vscode-cmake-tools/kits.html

24-01-15 16

CMake Starter Project

● hal/ ..
– Low-level modules with hardware

specific details.

● app/ ..
– Organized into modules for better

organization and encapsulation

● build/
– Created by CMake; temporary

● 3 CMakeLists.txt
– One in root to control full build

– One in each of hal/ and app/

24-01-15 17

Nano

● Nano is a somewhat easier to use text editor.
$ nano myfileToEdit.txt

– Just type and edit text as you might expect.

● Commands
– : Displays help. Ctrl+x to quit help.

– : Quit, asks you if you want to save.

24-01-15 18

Simple create/view a file
● Redirect text to a file

$ “Overwrite file with text” test.txt
$ “Adding this to end of file” test.txt

● View a file
$ daFile
concatenate the file, outputs to stdout (terminal)

$ daLongFile
shows page-by-page view of long file

$ -20 daLongFile
Shows last 20 lines of the file.

● Pipe output from one tool to another
$
displays kernel messages

– $ dmesg | less
$ dmesg | tail -20

cat

less

tail

dmesg

echo

24-01-15 19

Summary

● Boot sequence
– UBoot --> Kernel --> Root File System

● Makefiles automate building software.
– Create targets for different products/actions.

● CMake: cross-platfrom meta build system
– Process defined in CMakeLists.txt

● Text-based Editors
– Nano

