
Development Environment

Embedded Linux Primer Ch 1&2

Topics

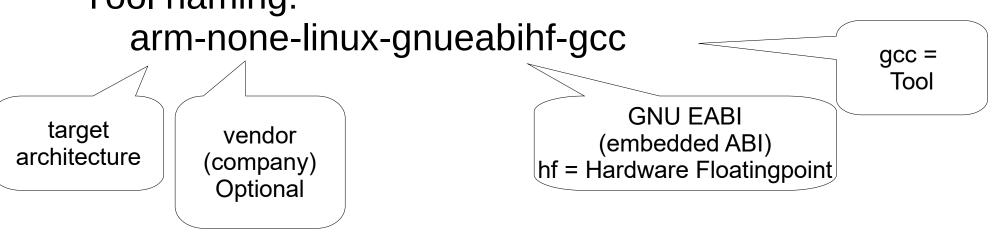
- 1) Systems: Host and Target
- 2) Host setup
- 3) Host-Target communication

Host and Target

Host & Target

- Host
 - Development PC

- Target
 - Embedded device


- Native Compiler:
 - Run compiler on host to build for host:
 - \$ gcc hello.c -o hello

" \$ means
Linux prompt
on host.

- Cross Compiler:
 - .. \$ arm-linux-gnueabihf-gcc hello.c -o hello
 - Many "cross" tools: Run on host, work with target:
 Ex: arm-linux-gnueabihf-gdb

Host & Target

Tool naming:

- ABI:...
 - Standard specifying how the program will:
 - layout data types in memory
 - (passing arguments, returning values).
 - perform system calls

Host vs Target Resources

Resource	Host	Target (BeagleBone Green)
OS	Debian 11.x	Debian Linux 11.x	
CPU	~3Ghz 12-core x64	1Ghz ARM Cortex-A8, 32 bit	eMMC: Embedded
RAM	32,000 Meg	512 MB	(on a chip)
Storage	4,000 GB harddrive	4GB eMMC	flash storage (MultiMedia Card)
Screen	23" LCD, multi-monitor	None; could use a cape.	
Input	Keyboard, mouse	1 button, USB Cape for lots!	TTI 0 0) /
Audio	In/out	via cape	TTL 3.0V:
Ethernet	1,000 BaseT	100 BaseT	
Other	DVD, Card reader	uSD Card, GPIO	
Terminal	Screen & Keyboard	TTL serial & SSH	Transistor to
Cost	~\$1,000	~\$50-\$100	transistor logic

Working with Hardware

- Many embedded systems run on custom hardware.
- Interact with the world using:
 - GPIO:..Set a pin to be on (3.3V) / off (0V), or read it.
 - I²C:..
 Communicate with chips like an accelerometer.
 - A2D:..
 Read analog voltages (Ex: battery voltage).
 - PWM:..
 Generate a sort-of analog voltage.
- For us, the Zen cape allows us to use all of these!

Host Setup

Host Setup

- Run Linux.
 - A definition of "Crazy":
 Developing for embedded Linux on non-Linux host.
- Run Linux as main OS, or in virtual machine (VM).
 - VirtualBox and VMWare Player: lets you run Linux inside Windows in a VM.
 - Selectively configure resources the VM gets.
 - Able to run multiple VM's on one machine.

Confusion:

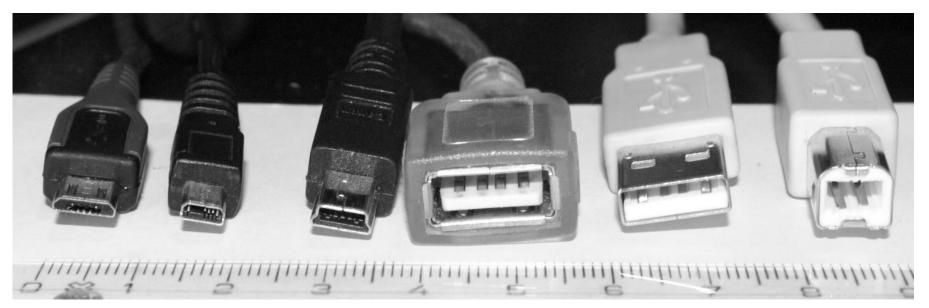
Host PC: Computer you code on.

Host OS: In VM context means "real" OS on computer.

Basic Linux Commands

Command	Description	Examples		
ls	Directory listing. Arguments: -a for all, -I for long (all info)	ls ls -l		
pwd	Show current directory name	pwd		
mkdir	Make a directory	mkdir myNewPlace	e	
cd	Change directory	cd myDir	cd \myDir cd \	
chmod	Change file permissions	chmod a+r hello	.a	
chown	Change file owner	chown bfraser he	ello.a	
sudo	Execute as administrator	sudo chown bfra	ser hello.a	
apt-get	Install a program	sudo apt-get in	stall somepackage	
gedit Edit a file (new window)		gedit hello.cpp &		
ifconfig	ifconfig Configure networking		ifconfig eth0 192.168.0.1	
mount	Mount a file-system	mount -t nfs \ 192.168.0.103:/	opt/img /mnt/img	
nano 24-01-09	Edit a file in the terminal	nano hello.cpp		

Basic Linux Commands


Command	Description	Examples
cat	Dump to screen	cat hello.cpp
less	Show on screen with "more" prompt. ('q' to quit)	less hello.cpp
tar	Archive management (unzip)	tar xvfj hello.tar.jz2
find	List all files in sub-folders	find
grep	Search for a string	<pre>grep "Hello world" *.cpp</pre>
 (Shift \)	Pipe: redirect output to second program's input	find grep hello.cpp
>	Redirect output to a file	<pre>ls > listing.txt</pre>
rm	Remove a file (delete)	rm listing.txt
echo	Print some text	echo hello
dmesg	Show kernel boot messages	dmesg

Recommended Linux Shell Tutorial:

Software Carpentry: http://swcarpentry.github.io/shell-novice/

Communication

How can we access the target? We need a Linux terminal, but how?

Micro-B plug, xxx, Mini-B plug, Standard-A receptacle, Standard-A plug, Standard-B plug

Serial & Ethernet

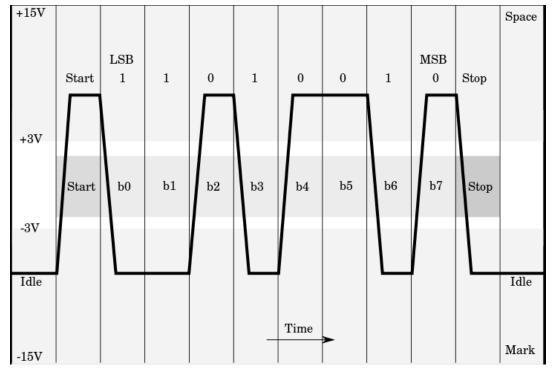
- We can connect to the BBG via a Serial Port and Ethernet
- Serial Port
 - A very low level communication port.
 - Used for sending characters between BBG and PC
 - Slow, but...
- Ethernet (over USB connection!)
 - Fast network connection
 - Used for SSH (Secure Shell) for a terminal
 - Used for NFS (Network File System) to share files

- ..

Communications Overview

- Serial Port:
 - Access target's Linux terminal via the serial port (Need serial port when can't use SSH: booting or errors)
 - Serial protocol for +/-12V
 - 0-3V (or 0-5V) serial protocol.
 - Zen cape has TTL over USB (micro USB port)
 - Host uses "Screen" program show serial data.
- Ethernet Network:

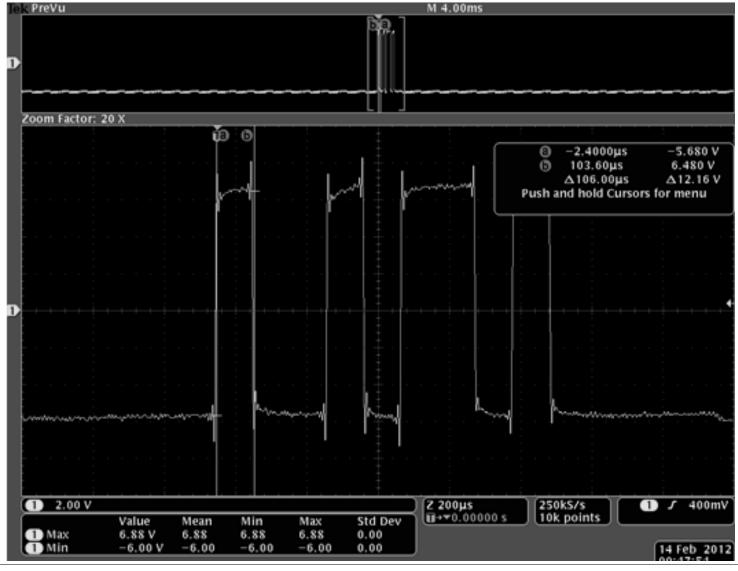
Ethernet


TTL over USB

Can use network cable, or Ethernet over USB

Ethernet

TTL over USB


RS232 Serial Protocol

- RS232 voltages- -12V = 1; +12 = 0
- Each bit has fixed time dependant on bitrate
- Starts with start bit(s) (+12v); ends with stop bit(s) (-12v)
- Diagram shows a 'K' character (0x4B)

RS = "Recommended Standard"

RS232 Real World View

- Oscilloscope trace of 'K' (0x4B), 1 start bit, 8 bits, 2 stop bit.
- HW has to be sync'd to know where to sample each bit.
- Timing errors lead to garbage characters.

²⁴⁻⁰¹By Haji akhundo<u>v - Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=18444265</u>

RS-232 & TTL Settings

- RS-232 is a "Serial Port"
 - Connector is often a DB9 / DB25
 with bi-directional data:
 can Tx and Rx at the same time.

- Zen cape has FTDI chip to convert TTL serial data from the microprocessor to USB; host has drivers to access it like a "normal" serial port. (Called TTL-232)
- BeagleBone Serial Port Settings
 - Speed (bps), #bits/byte, parity check, # stop bits:

.. < 14kBytes / second!

- Optional handshaking to control data transmission.
 - We'll always use no handshaking

Screen Program

- Run Screen on host to view target's serial port.
- Screen Usage on host

Don't type \$

- Install: \$ sudo apt-get install screen
- Run: \$ sudo screen /dev/ttyUSB0 115200

No sudo access in lab host OS. (Can run screen there without sudo)

- Screen Operations
 - Show help: Control a + (no control)?
 - Quit: Control a + (no control) \
- Linux Ports
 - /dev/ttyUSB0 how Linux supports TTL over USB

To show kernel messages when USB device connected:..

Demo: Screen, dmesq. 18

Network

- BeagleBone can network in two ways:
 - Ethernet

Mostly use Ethernet over USB

- Normal "RJ45" Ethernet connection.
- BBG uses DHCP to get an IP address:
 DHCP =..

Ethernet over USB

2 USB Micro:

On Zen: Serial
On BBG: Power &

Ethernet over USB

 Micro USB cable allows BeagleBone to mount on host PC as a network connection.

Host has IP: 192.168.7.1

• Target has IP: 192.168.7.2

Networking Basics

Find out IP settings:

```
(host)$ ip addr
(bbg)$ ip addr
```

(host): means host PC command (bbg): means target command

- ssh to open a terminal to the target
 (host) \$ ssh debian@192.168.7.2
- ping to test TCP/IP connection to board:

```
(host) $ ping 192.168.7.2 (bbg) $ ping 192.168.7.1
```

Files over the Network

- Mounting directory over NFS
 - NFS:..
 - Use NFS to make application testing MUCH faster:
 - Transferring ~50 meg takes ~1min vs ~1hr.
 - On the target, mount the host's directory and..

"Pro" Tip:
 Always look for ways to make development faster.

Review

1. What is cross compiling?

2. What does sudo do?

3. What will we use TTL over USB for?

4. Explain why NFS is useful.

Summary

- Develop on host, deploy on target.
 - Cross compile on host for target.
- Target has limited resources, but custom hardware:
 - GPIO, I2C, A2D, PWM.
- Host running Linux in VM or native
- Communicate to target using TTL-232 and Ethernet:
 - DHCP, Ping, TFTP, NFS.

24-01-09 23