
Streaming Webcam Input with OpenCV

Confirming input from Logitech HD Pro Webcam
C920 (connected to the beagle)

Dependencies:

Hardware Used: This section is primarly for the BeagleY-AI and Logitech HD Pro Webcam C920.

It has also been tested with the Logitech Webcam C500 so in theory, this should work with any usb
webcam.

Software Used (Download instructions are provided when necesarry): fswebcam, v4l2 (video for linux 2)

Steps

1: Confirm Connection

We will check which file(s) the usb webcam is on with V4L2 and take the actual picture with fswebcam.

Install the following drivers:

(target)$ sudo apt update && sudo apt upgrade
(target)$ sudo apt install fswebcam
(target)$ sudo apt install v4l2-ctl

List the devices:

(target)$ v4l2-ctl --list-devices

It should be listed under HD Pro Webcam C920. (or your webcam of choice)

Example output:

e5010 (platform:e5010):
 /dev/video2

Note: ffmpeg is another option, but it didn't work for us

wave5-dec (platform:wave5-dec):
 /dev/video0

wave5-enc (platform:wave5-enc):
 /dev/video1

HD Pro Webcam C920 (usb-xhci-hcd.5.auto-1.3):
 /dev/video3 # Keep note of the ones under /dev/video$(n)
 /dev/video4 # These are the ones we want
 /dev/media0

2. Take a Photo

Let's create a folder to keep our photos:

(target)$ mkdir ~/webcam_pics/

Then you can choose to directly pass args:

(target)$ fswebcam -d /dev/video3 ~/webcam_pics/webcam.jpg

Or make a config file for easier option customization:

(target)$ nano ~/.fswebcam.conf

Copy the following text into your config file:

Save as ~/.fswebcam.conf
device /dev/video0
resolution 640x480
skip 5 # Skip first 5 frames (avoid dark/glitchy images)
jpeg 85 # JPEG quality (1-100)
save /home/debian/webcam_pics/webcam.jpg
timestamp # Optional: Add timestamp overlay

Passing the file to fswebcam as an arg:

(target)$ fswebcam -c ~/.fswebcam.conf

3. View the Photo (Copying to Host)

Use the Secure Copy Protocol from the host to receive photos.

(host)$ scp debian@192.168.7.2:/home/debian/webcam_pics/webcam.jpg ~/Pictures/beagle_webcam

It's possible to sync the directories if you want to avoid using scp everytime.

(host)$ rsync -avz debian@beagleboard-ip:/home/debian/webcam_pics/ ~/Pictures/webcam_pics/

Using OpenCV

1. Get OpenCV on the Target

(target)$ sudo apt update && sudo apt upgrade
(target)$ sudo apt install libopencv-dev

2. Get OpenCV on the Host

Get dependencies, you should have all of these anyways.

(host)$ sudo apt install cmake g++ build-essential

Install OpenCV

GET FROM REPO
(host)$ git clone https://github.com/opencv/opencv.git
(host)$ cd opencv

BUILD PROJECT

Note: There is a GUI for the beagle-y-ai, so it's possible to connect the board to a monitor and view the image directly.

Note: using ~ in place of home/debian/ may not work

Note: This may take a while, have a movie ready or something

Note: For the INSTALL PROJECT SECTION, using -j$(nproc) uses all your cores and may crash your device if using a computer with less

processing power.

(host)$ mkdir build && cd build
(host)$ cmake -D CMAKE_BUILD_TYPE=Release \
 -D CMAKE_INSTALL_PREFIX=/usr/local \
 -D OPENCV_EXTRA_MODULES_PATH=../../opencv_contrib/modules \
 -D BUILD_EXAMPLES=OFF \
 -D BUILD_TESTS=OFF \
 -D BUILD_PERF_TESTS=OFF \

INSTALL PROJECT
(host)$ make -j$(nproc) # My laptop crashed with nproc, consider using less processes
(host)$ sudo make install
(host)$ sudo ldconfig

3. Run a Simple Example

Try running this simple snippet. If all goes well, it should download the image

#include <opencv2/imgcodecs.hpp>
#include <opencv2/imgcodecs.hpp>
#include <opencv2/videoio.hpp>

#include <iostream>

// Do you remember your paths?
#define WEBCAM_PATH1 "/dev/video3"
#define WEBCAM_PATH2 "/dev/video4"

// Don't use "~" over /home/debian/
// Make sure /home/debian/webcam_pics exists
#define IMG_PATH "/home/debian/webcam_pics/VideoCaptureImg.jpg"

int main() {
 cv::Mat img;
 cv::VideoCapture cap(WEBCAM_PATH1, cv::CAP_V4L2);
 if (!cap.isOpened()) {
 std::cerr << "Unable to connect to camera" << std::endl;
 }

 // Clear buffer + garbage read dead frames
 for (int i = 0; i < 5; ++i) {
 cap.read(temp);
 }
 // The actual read
 if (!cap.read(temp)) {
 std::cerr << "Failed to read from webcam");
 }

 cv::imwrite(IMG_PATH, temp);
}

