
‭CMPT 433 How To Guide‬
‭Sepehr Ahmadipourshirazi‬

‭Andrew Lam‬

‭Overview‬

‭In this guide, you'll learn how to:‬

‭●‬ ‭Set up SFML on your Linux system (or embedded Linux board if supported)‬

‭●‬ ‭Write a simple C++ program that opens a green window‬

‭●‬ ‭Use arrow keys to move a box on the screen‬

‭●‬ ‭Compile and run your application using CMake‬

‭This tutorial assumes you're familiar with basic Linux terminal usage and C++ programming but‬
‭not with SFML.‬

‭Part 1: Installing SFML and Development Tools‬

‭Install Dependencies:‬

‭Open a terminal and run the following commands to install the required packages:‬

‭$‬‭sudo apt update‬
‭$‬‭sudo apt install libsfml-dev g++ make‬

‭NOTE: Make sure the installation finishes without errors.‬

‭Part 2: Writing the Code‬

‭Step 1: Include the Required Header‬
‭To start using SFML, you need to include its graphics module:‬

‭#include <SFML/Graphics.hpp>‬

‭This includes the entire SFML graphics library, which internally pulls in modules like window,‬
‭system, and graphics. It's all you need for basic 2D apps.‬

‭Step 2: Create the Main Window‬

‭Copy the following code to start the program and create the main application window:‬

‭int‬‭main() {‬
‭sf::RenderWindow window(sf::VideoMode(‬‭800‬‭,‬‭600‬‭),‬‭"SFML Window"‬‭);‬
‭return‬‭0‬‭;‬

‭}‬

‭Step 3: Drawing the Red Box‬

‭SFML makes it very intuitive to draw shapes using its built-in‬‭shape classes‬‭. In this case, we’re‬
‭using ‘‬‭sf::RectangleShape’‬‭, which is part of the‬‭SFML‬‭Graphics module‬‭.‬

‭Here is an example of how we draw our rectangle box and set properties for it:‬

‭// Create a red square of size 50x50‬
‭sf‬‭::RectangleShape player(‬‭sf‬‭::Vector2f(‬‭50‬‭,‬‭50‬‭));‬
‭player‬‭.setFillColor‬‭(‬‭sf‬‭::‬‭Color‬‭::Red);‬

‭// Start near the center‬
‭player‬‭.setPosition‬‭(‬‭375‬‭,‬‭275‬‭);‬

‭Step 4: Game Loop‬
‭Now that we have the player box, we can move on to handling the game loop and the keyboard‬
‭inputs.‬

‭In SFML, the main logic of your program runs inside a loop like this:‬

‭while‬‭(‬‭window‬‭.isOpen()) {‬
‭...‬

‭}‬

‭This is called the‬‭game loop‬‭or‬‭main loop‬‭, and it‬‭continues running until the user closes the‬
‭window. Let's break down everything that happens inside it.‬

‭Within the game loop, we can start by adding logic for closing the window if the user clicks the‬
‭‘x’ at the top right of the window:‬

‭sf::Event‬‭event‬‭;‬
‭while‬‭(‬‭window‬‭.pollEvent(‬‭event‬‭)) {‬

‭if‬‭(‬‭event‬‭.type == sf::Event::Closed)‬
‭window‬‭.close();‬

‭}‬

‭sf::‬‭Event‬‭event‬ ‭→ declares a variable that will‬‭store different types of events, like key‬
‭presses, mouse movements, or closing the window.‬

‭window‬‭.pollEvent(‬‭event‬‭)‬ ‭→ checks if there are any‬‭new events, and processes them one‬
‭by one.‬

‭event.‬‭type‬‭== sf‬‭::Event::Closed‬ ‭→ checks if the‬‭window's close button (X) was clicked.‬
‭If so, `‬‭window.close()`‬‭shuts down the app.‬

‭Step 5: Input Handling‬
‭Below is an example of how you can listen for keyboard inputs and move the box with the arrow‬
‭keys inside the game loop:‬

‭if‬‭(‬‭sf‬‭::‬‭Keyboard‬‭::isKeyPressed(‬‭sf‬‭::‬‭Keyboard‬‭::Left))‬
‭player‬‭.move‬‭(-‬‭1‬‭,‬‭0‬‭);‬

‭if‬‭(‬‭sf‬‭::‬‭Keyboard‬‭::isKeyPressed(‬‭sf‬‭::‬‭Keyboard‬‭::Right))‬

‭player‬‭.move‬‭(‬‭1‬‭,‬‭0‬‭);‬
‭if‬‭(‬‭sf‬‭::‬‭Keyboard‬‭::isKeyPressed(‬‭sf‬‭::‬‭Keyboard‬‭::Up))‬

‭player‬‭.move‬‭(‬‭0‬‭, -‬‭1‬‭);‬
‭if‬‭(‬‭sf‬‭::‬‭Keyboard‬‭::isKeyPressed(‬‭sf‬‭::‬‭Keyboard‬‭::Down))‬

‭player‬‭.move‬‭(‬‭0‬‭,‬‭1‬‭);‬

‭sf::Keyboard::isKeyPressed(...)‬ ‭→ checks if a key‬‭is currently being held down.‬

‭player‬‭.‬‭move‬‭(x, y)‬ ‭→ function shifts the red box‬‭by the specified amount:‬

‭●‬ ‭(-1, 0) = move 1 pixel left‬
‭●‬ ‭(1, 0) = move 1 pixel right‬
‭●‬ ‭(0, -1) = move 1 pixel up‬
‭●‬ ‭(0, 1) = move 1 pixel down‬

‭Why not use events for this?‬‭SFML lets you check if‬‭a key is held down‬‭outside of events‬‭for‬
‭smooth movement (like holding down an arrow key), instead of reacting to each individual key‬
‭press event.‬

‭Step 5: Finalizing Application‬

‭At the end of the main game loop, all you need to do is to clear the screen, draw the red square‬
‭in its position, and display the updated frame:‬

‭window‬‭.‬‭clear‬‭(sf::Color::Green);‬ ‭// Set background‬‭to green‬
‭window‬‭.‬‭draw‬‭(player);‬ ‭// Draw the red box‬
‭window‬‭.display();‬ ‭// Show the final‬‭frame‬

‭Here is an overview of what your entire code should look like so far:‬
‭#include <SFML/Graphics.hpp>‬

‭int main() {‬
‭sf::RenderWindow window(sf::VideoMode(‬‭800‬‭,‬‭600‬‭),‬‭"SFML Window"‬‭);‬

‭// Create a red square of size 50x50‬
‭sf::RectangleShape player(sf::Vector2f(‬‭50‬‭,‬‭50‬‭));‬
‭player.setFillColor(sf::Color::Red);‬

‭// Start near the center‬
‭player.setPosition(‬‭375‬‭,‬‭275‬‭);‬

‭while‬‭(window.isOpen()) {‬

‭/*‬
‭declares a variable that will store different types of events,‬
‭like key presses, mouse movements, or closing the window.‬
‭*/‬
‭sf::Event event;‬
‭while‬‭(window.pollEvent(event)) {‬

‭if‬‭(event.‬‭type‬‭== sf::Event::Closed)‬
‭window.close();‬

‭}‬

‭if‬‭(sf::Keyboard::isKeyPressed(sf::Keyboard::Left))‬
‭player.‬‭move‬‭(-‬‭1‬‭,‬‭0‬‭);‬

‭if‬‭(sf::Keyboard::isKeyPressed(sf::Keyboard::Right))‬
‭player.‬‭move‬‭(‬‭1‬‭,‬‭0‬‭);‬

‭if‬‭(sf::Keyboard::isKeyPressed(sf::Keyboard::Up))‬
‭player.‬‭move‬‭(‬‭0‬‭, -‬‭1‬‭);‬

‭if‬‭(sf::Keyboard::isKeyPressed(sf::Keyboard::Down))‬
‭player.‬‭move‬‭(‬‭0‬‭,‬‭1‬‭);‬

‭window.clear(sf::Color::Green);‬ ‭// Set background‬‭to green‬
‭window.draw(player);‬ ‭// Draw the‬‭red box‬
‭window.display();‬ ‭// Show the‬‭final frame‬

‭}‬

‭return‬‭0‬‭;‬
‭}‬

‭Step 5: Building & Execution using CMake‬

‭In order to build and execute the application, start by creating a CMakeList.txt in the same‬
‭directory as your main.cpp (the code that we just wrote for the game). Then, copy paste the‬
‭code below into your CMakeList.txt:‬

‭cmake_minimum_required(‬‭VERSION‬‭3.10‬‭)‬
‭project(‬‭box_game‬‭)‬

‭set(‬‭CMAKE_CXX_STANDARD‬‭20‬‭)‬

‭# Find SFML‬
‭find_package(‬‭SFML‬‭2.5‬‭REQUIRED COMPONENTS graphics‬‭window system)‬

‭# Create the executable‬
‭add_executable(‬‭box_game‬‭main.cpp)‬

‭# Link SFML to your actual executable target‬
‭target_link_libraries(‬‭box_game‬‭sfml-graphics sfml-window‬‭sfml-system)‬

‭Once you have the cmake ready, run the following command to build you application:‬

‭$ cmake -‬‭B build‬‭&& cmake --‬‭build build‬

‭Now all you have to do to run the application is to go inside the build directory and execute the‬
‭box_game‬‭executable:‬

‭$‬‭cd‬‭build/‬
‭$‬‭./box_game‬

‭Troubleshooting‬

‭SFML Not Found by CMake‬
‭Error:‬
‭̀Could not find SFML (missing: SFML_GRAPHICS_LIBRARY SFML_WINDOW_LIBRARY‬
‭SFML_SYSTEM_LIBRARY)’‬

‭Fix:‬
‭Make sure SFML is installed:‬

‭$ sudo apt‬‭install‬‭libsfml-dev‬

‭Then delete the build folder and re-run the commands:‬

‭rm‬‭-rf‬‭build‬
‭cmake‬‭-‬‭B build‬
‭cmake‬‭--‬‭build build‬

‭Linking Error‬
‭Error:‬
‭̀undefined reference to `sf::RenderWindow::RenderWindow(...)`‬

‭Fix:‬
‭This means the linker isn't finding SFML. Make sure your‬‭CMakeLists.txt‬‭links the required‬
‭components:‬

‭target_link_libraries‬‭(box_game sfml-graphics sfml-window‬‭sfml-system)‬

