Pan / Tilt Kit Guide for BeagleY-Al

CMPT 433: Embedded Systems
Andre Luong, Brian Le, Dongan Kim
Spring 2025

Guide has been tested on:
e BeagleY-Al (Target): Debian 12.x
e PC OS (Host): Debian 12.x

Equipment:

BeagleY-Al

Dagu Mini Pan/Tilt Kit

Breadboard

9 Wires (6 M-M, 3 M-F)

External Power Supply (5V, 1+ Amps) with a 2.1mm DC Power Adapter

Note:
e A servo from our pan/tilt kit was defective, so we replaced it with another servo

Table of Contents:

e Introduction
Pulse Width Modulation
Circuit Wiring
Controlling with C++
Troubleshooting

Introduction

This guide introduces how to integrate a pan/tilt kit with a BeagleY-Al board and control

it using a simple C++ program.

The kit uses two servos which are controlled using pulse-width modulation (PWM). We

will use a PWM period of 50,000,000 ns (50 ms). This produces a slow, but smooth turn

when changing angles. The duty cycle will range from 500,000 to 2,500,000 ns (0.5 to
2.5 ms), corresponding to the servo’s maximum rotation of 180°.

Pulse-Width Modulation

BeagleY-Al provides a few PWM modules to use. For this setup:

Pin # | Pin Name PWM Module [Usage | Overlay

8 GPIO14 PWMO Tilt k3-am67a-beagley-ai-pwm-epwmO-
gpio14.dtbo

31 GPIO6 PWM1 Pan k3-am67a-beagley-ai-pwm-epwm1-
gpio6.dtbo

Enable these PWM pins by editing the /boot/firmware/extlinux/extlinux.conf file and
loading each overlay. Reboot your board afterwards.

Before each use, configure the HAT pin PWM symlink pin:

(target)$ sudo beagle-pwm-export --pin hat-08
(target)$ sudo beagle-pwm-export --pin hat-31

It’s recommended to include these commands in a script to avoid excessive user
configuration.

For more details on configuring PWM, refer to the course’s PWM Guide.

https://opencoursehub.cs.sfu.ca/bfraser/grav-cms/cmpt433/guides/files_byai/PWMGuide.pdf

Circuit Wiring

+5V

[1|—

BeagleY-AT

G6PI06 EI"E]
(e ———

Power: @ GND &
Analog:
Ground: @

Given that each servo consumes up to 500mA, we required an external power supply
to provide the 1A that the BeagleY-Al board can’t sufficiently supply.

Each servo has a wire attached with 3 colours: red for power, brown for ground, and
yellow/orange for analog signal.

Note that no resistors are needed, as the servos can accept the analog signal directly
from the GPIO pins.

1. Attach 2 M-M wires to the DC Power Adapter. Use a screwdriver to unlock and
lock the wire ends in place. Attach the other ends to the power rails of the
breadboard.

2. For each servo:

a. Attach 2 M-M wires for power and ground to the power rails.
b. Attach a M-F wire for analog to a GPIO pin. PYMNL 3 has GPIO6 and
UART 1 has GPIO14.

3. Attach a M-F wire from PYMNL 10 (GND) to the ground rail of the breadboard.
This would ground the entire circuit.

4. Connect the DC Power Adapter with the Power Supply Adapter.

https://botland.store/grapplers-and-gimbals/2547-micro-pantilt-servo-bracket-servo-dagu-6952581600121.html

Power Supply

® Red: pwr
®Black: gnd
Pan:
Yellow: pwr
Grey: gnd
White: gpio6
Tilt:
Orange: pwr
Purple: gnd

®Brown: gpiol4

PYMNL 10:
eblack: gnd

Controlling with C++

Once the circuit has been properly configured and connected, we can run the following
C++ program to test the pan/tilt kit functionality. This program simply turns the pan,
left-right-left, and tilt, down-up-down.

Libraries:

#include <iostream>
#include <fstream>
#include <unistd.h>

Variables:
const std::string& PAN_FILE_PATH = "/dev/hat/pwm/GPIO6/";
const std::string& TILT_FILE_PATH = "/dev/hat/pwm/GPIO14/";

const std::string& PERIOD = "period";
const std::string& DUTY_CYCLE = "duty cycle";
const std::string& ENABLE = "enable";

constexpr int ONE_SECOND_NS = 1000000000,
constexpr int MIN_DUTY_CYCLE = 500000;
constexpr int MAX_DUTY_CYCLE = 2500000;
constexpr int MAX_ROTATION = 180;

Functions:

static void writeToFile(const std::string& filePath, const std::string& file, const
std: :string& value) {
std::ofstream out;
out.open(filePath + file);
if (lout) {
std::cerr << "[Error] Can't write " << value << " to file: "
<< filePath << file << std::endl;

return;
}
out << value;
out.close();

static void setEnable(const std::string& filePath, const int& value) {
writeToFile(filePath, ENABLE, std::to_string(value));

static void setDutyCycle(const std::string& filePath, const int& value) {
writeToFile(filePath, DUTY_CYCLE, std::to_string(value));

static void setPeriod(const std::string& filePath, const int& hertz) {
auto frequencyNs = ONE_SECOND_NS / hertz;
writeToFile(filePath, PERIOD, std::to_string(frequencyNs));

static void setServoAngle(const std::string& filePath, const int& angle) {

int dutyCycle = MIN_DUTY_CYCLE + ((MAX_DUTY_CYCLE - MIN_DUTY_CYCLE) * angle)
/ MAX_ROTATION;
setDutyCycle(filePath, dutyCycle);

sleep(1);

Test Program:
int main() {

setDutyCycle(PAN_FILE_PATH, 9);
setDutyCycle(TILT _FILE_PATH, 9);
setPeriod(PAN_FILE PATH, 20);

setPeriod(TILT_FILE_PATH, 20);
setEnable(PAN_FILE PATH, 1);
setEnable(TILT_FILE_PATH, 1);

printf("Starting...\n");
sleep(1l);
setServoAngle(PAN_FILE_PATH, 9);

setServoAngle(TILT _FILE_PATH, 9);

setServoAngle(PAN_FILE_PATH, 180);
setServoAngle(TILT _FILE_PATH, 180);

setServoAngle(PAN_FILE_PATH, ©0);
setServoAngle(TILT_FILE_PATH, 9);
setEnable(PAN_FILE_PATH, 9);

setEnable(TILT FILE_PATH, 9);

printf("Done!\n");
return 0;

Troubleshooting

Unknown pin name: [--pin hat-#]

e The HAT pin PWM symlink pin has not been configured correctly. Double check

the naming in the Pulse-Width Modulation section.

[Error] Can’t write <value> to file <file>

e This error comes from running the C++ program. Ensure that the correct pins are

used and the overlays are added correctly. Refer to the PWM Guide for more

detail on set up.

Servo is not functioning

e This may be a result of defective components. Double check the wires, servos,

and power supply by swapping out parts and GPIO pins. Replace any defective

components found.

https://opencoursehub.cs.sfu.ca/bfraser/grav-cms/cmpt433/guides/files_byai/PWMGuide.pdf

	Introduction
	Pulse-Width Modulation
	Circuit Wiring
	Controlling with C++
	Troubleshooting

