

PN532 NFC/RFID Guide
by Hayden Mai
Last Updated: April 10, 2025

Guide has been tested on
​ BeagleY-AI (Target):​​ Debian 12.8
​ PC OS (host):​​ ​ Debian 12.8

This document guides the user through:

1.​ Wiring to the Zen Hat’s PYMNL based on SPI/I2C protocol
2.​ Cross-compiling libnfc and configuration support
3.​ Read/write for a 13.56MHz MIFARE Classic 1k card/tag

Table of Contents
1. RFID Intro...2
2. Wiring and Configuration..2
3. Installing libnfc..3
4. Read/Write to a Tag..5

4.1. Reading a Tag... 5
4.2. Writing to a Tag..6
4.3. List of Commands..6

5. Next Steps..6
6. References... 7

Formatting

1.​ Commands for the host Linux’s console are shown as:
(host)$ echo "Hello PC world!"

2.​ Commands for the target (BeagleY-AI) Linux’s console are shown as:
(byai)$ echo "Hello embedded world!"

3.​ Almost all commands are case sensitive.

1.​ RFID Intro
This guide covers the basics of the PN532 module using the libnfc library and the procedures to
read and write data to a MIFARE Classic 1k tag. The PN532 reader module supports both
Inter-Integrated Circuit (I2C) and Serial Peripheral Interface (SPI) communication protocols.
However, this guide has only been tested for SPI communication on the BeagleY-AI platform.

Previous PN532 RFID guides focus on different programming languages such as C++ or Python,
and utilize an alternative method to communicate with the module. In contrast, this guide aims to
provide a practical extension to lecture materials while addressing potential knowledge gaps.

2.​ Wiring and Configuration
1. For SPI/I2C communication, the dual in-line package (DIP) switches on the PN532 modules

need to be configured as follows:

Communication Protocol SEL0 SEL1

I2C (Figure 2) 1 0

SPI (Figure 3) 0 1

https://github.com/nfc-tools/libnfc

2. The PN532 requires either 3.3V or 5V, as well as connecting the PN532 pins to the Zen Hat
pins based on the communication mode:

SPI Pin Configuration​​ ​ ​ ​ I2C Pin Configuration​ ​

PN532 Pin Zen Hat Pin PN532 Pin Zen Hat Pin

SCK SPI0 SCK SDA I2C1 SDA

MISO SPI0 MISO SCL I2C1 SCL

MOSI SPI0 MOSI VCC 3.3V/5V

SS SPI0 CE1 GND GND

VCC 3.3/5V

GND GND

3.​ Installing libnfc
To begin reading tags using the PN532, we will be using the libnfc library as the interface between
Linux and the NFC module. Note: Only SPI was fully tested for this section.

1.​ Install libnfc on target:
(byai)$ sudo apt install libnfc-bin libnfc-examples

2.​ Configure libnfc to use SPI port:
(byai)$ nano /etc/nfc/libnfc.conf

…
Set log level (default: error)
Valid log levels are (in order of verbosity): 0 (none), 1
(error), 2 (info), 3 (debug)
Note: if you compiled with --enable-debug option, the default
log level is "debug"
log_level = 1

Manually set default device (no default)
To set a default device, you must set both name and
connstring for your device
Note: if autoscan is enabled, default device will be the
first device available in device list.
device.name = "PN532 via SPI" # Can be anything you’d like
device.connstring = "pn532_spi:/dev/spidev0.1:50000" # SPI

●​ If you are using I2C, replace the last line with:

device.connstring = "pn532_i2c:/dev/i2c-1" # I2C

3.​ Check if libnfc is successfully configured:
(byai)$ nfc-list
nfc-list uses libnfc 1.8.0
NFC device: PN532 via SPI opened

4.​ To read a card, you can either have a tag already on the module and run the command in
step 3, or you can poll for a tag instead. An example read of a MIFARE Classic 1k tag:
(byai)$ nfc-list
... (first 2 line omitted)
1 ISO14443A passive target(s) found:
ISO/IEC 14443A (106 kbps) target:
​ ATQA (SENS_RES): 00 04
 ​ UID (NFCID1): bb 69 f9 04
 ​ SAK (SEL_RES): 08

(byai)$ nfc-poll
... (first 2 line omitted)
NFC device will poll during 36000 ms (20 pollings of 300 ms for 6
modulations)
ISO/IEC 14443A (106 kbps) target:
​ ATQA (SENS_RES): 00 04
 ​ UID (NFCID1): bb 69 f9 04
 ​ SAK (SEL_RES): 08
Waiting for card removing...nfc_initiator_target_is_present:
Target Released
Done.

5.​ Cross compiling libnfc on host for C development:
​ (host)$ sudo apt install libnfc-dev:arm64

●​ Include #include <nfc/nfc.h> when coding.
●​ While compiling, add the linker option -lnfc flag.
●​ Refer to the included sample code for CMake compilation.

6.​ Troubleshooting:

●​ If neither nfc-list nor nfc-poll works, try running the commands with sudo.
●​ Check if the SPI overlay is loaded on the BeagleY-AI:

●​ You should have two files: /dev/spidev0.0 and /dev/spidev0.1.
●​ If the files are not present, check extlinux.conf:

(byai)$ sudo nano /boot/firmware/extlinux/extlinux.conf

●​ The fdtoverlays line in the last section should contain:
/overlays/k3-am67a-beagley-ai-spidev0.dtbo

●​ Check if your jumper wires are correctly connected (See 2. Wiring and Configuration).

4.​ Read/Write to a Tag
This portion of the guide will provide a quick rundown of read and write for a MIFARE Classic 1k
tag using the PN532 module. For more information, refer to the provided C sample code and both
the PN532 (section 7.3.8, pg. 130) and MIFARE Classic (section 8.6 - 9.1) datasheets.

Included with each tag is 1KB (1024 bytes) of EEPROM, it is organized as:
●​ 16 sectors, numbered from 0 to 15.
●​ Each sector contains 4 data blocks, numbered from 0 to 3.

●​ The first data block (block 0) of the first sector (sector 0) is the manufacturer block. It
contains the UID of the tag and manufacturer data.

●​ The last data block (block 3) of each sector is a sector trailer, containing keys A & B and
access bits (access conditions).

●​ Each block can store up to 16 bytes of data.

4.1.​ Reading a Tag
In order to read data, the PN532 module must
make a request to read a block. This can be done
using the following data structure:

CMD ADDR DATA[16]

●​ CMD is the command byte, in this case is
read (0x30).

●​ ADDR is the block number to access (e.g.
block 1)

●​ DATA stores the 16 bytes of data read from
the tag.

Note: In order to access a block, the RFID
reader/writer must first send an authentication
command (0x60/0x61) to any block in the same
sector for read/write access. This only needs to be done once if your next access is within the same
sector. (e.g. authenticate once to read blocks 4, 5, 6 in one go)
●​ To authenticate, the same data structure is used, however DATA contains authentication

information:
●​ Bytes 0 to 5 contain the 6 byte key (A or B).
●​ Bytes 6 to 9 contain the 4 byte UID of the targeted card.

●​ By default, key A is {0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF}. Key B is not set.
●​ Key and access bits may be changed, refer to section 8.6.3 of the MIFARE Classic datasheet

for more information about the sector trailer.

4.2.​ Writing to a Tag
Similarly, writing to a tag uses the same data structure, now with the write (0xA0) command as
CMD, and the data to be written to the tag is stored DATA. Do note that changing access bits may
change the write permission of the sector for a certain key. By default, authentication using key A
will enable read/write access. Visit section 8.7.1 of the MIFARE Classic datasheet for further
information.

4.3.​ List of Commands
Here are a few relevant commands you may use/encounter:

Command (CMD) Command code (hexadecimal) Notes

Authentication with Key A 0x60

Authentication with Key B 0x61 Is not used by default

Read 0x30

Write 0xA0

Decrement 0xC0 Value block only

Increment 0xC1 Value block only

Restore 0xC2 Value blocks only

Transfer 0xB0

More commands can be found in section 9.1 of the MIFARE Classic datasheet.

5.​ Next Steps
You’ve reached the end of this PN532 guide! Be sure to check out the included C sample code
(using libnfc-dev) for read and write implementations that build on the concepts in this guide.
While this guide covers the core concepts, it doesn’t address every detail of PN532. For a more
comprehensive understanding, referring to the official datasheets is highly recommended.

6.​ References
●​ PN532 Datasheet: https://www.nxp.com/docs/en/user-guide/141520.pdf
●​ MIFARE Classic Datasheet: https://www.nxp.com/docs/en/data-sheet/MF1S50YYX_V1.pdf
●​ libnfc library: https://github.com/nfc-tools/libnfc
●​ MIFARE Classic 1K Access Bits Calculator: http://calc.gmss.ru/Mifare1k/

https://www.nxp.com/docs/en/user-guide/141520.pdf
https://www.nxp.com/docs/en/data-sheet/MF1S50YYX_V1.pdf
https://github.com/nfc-tools/libnfc
http://calc.gmss.ru/Mifare1k/

	1.​RFID Intro
	2.​Wiring and Configuration
	3.​Installing libnfc
	4.​Read/Write to a Tag
	4.1.​Reading a Tag
	4.2.​Writing to a Tag
	4.3.​List of Commands

	5.​Next Steps
	6.​References

