
CMPT 433

How to Use OpenCV for Real-Time
Face Detection with BeagleY-AI

Rajbir Singh Bains
Tej Singh Pooni

Sukhmanpreet Singh
Gurkeerat Singh Bouhgan

Prerequisites:

-​ HD Camera using USB connection (Recommended using no more than 5V supported
devices) [1]

1. Setting Up Environment

1.1 Install tools on the host
​ Install cross-compiler for ARM:
​ sudo apt install g++-aarch64-linux-gnu

​ Install OpenCV Development Libraries for ARM
​ sudo apt-get install libopencv-dev:arm64

(TROUBLESHOOT) Update PKG_CONFIG_PATH: If CMake cannot find OpenCV
configuration files, update the PKG_CONFIG_PATH

​ export PKG_CONFIG_PATH=/usr/lib/x86_64-linux-gnu/pkgconfig:$PKG_CONFIG_PATH

​ Download the Haar Cascade file [2], used for face detection, in the resources folder
​ wget https://github.com/opencv/opencv/raw/master/data/haarcascades/haarcascade_frontalface_default.xml

​ mv haarcascade_frontface_default.xml /path/to/project/resources/

1.2 Setup host environment (Python)
​ Create a new Conda environment named faceenv and install dlib
​ conda create -n faceenv python=3.10 -y
​ conda activate faceenv
​ conda install -c conda-forge dlib -y

​ Install necessary libraries
​ pip install face_recognition python-dotenv requests

(TROUBLESHOOT) May encounter an “illegal instruction” error. You need to reinstall
dlib without precompiled binaries
pip uninstall dlib
pip install --no-binary :all: dlib

1.3 Install tools on target
​ Install OpenCV Development Libraries
​ sudo apt-get install libopencv-dev

​ Verify installation
​ python3 -c “import cv2; print(cv2._version_)”
2. Connecting and Configuring the Camera (All commands done of Target)

https://github.com/opencv/opencv/raw/master/data/haarcascades/haarcascade_frontalface_default.xml

2.1 Connect camera to one of the USB ports on the BeagleY-AI

 ​ Verify that the camera is detected using:

ls /dev/video*

​ *You should see a device like /dev/video0 or dev/video3.

*Note: Might need to compare the dir to when USB is not connected vs when it is to
know which /dev/video* directory corresponds to the camera.
​
When Camera is not plugged in:

When Camera is plugged in:

Here we can see /dev/video3 and /dev/video4 correspond to our camera device

Troubleshoot:

If dev directory for new camera does not show, verify USB devices using : lsusb

Note: May need to run sudo apt install usbutils if command is not found

2.2 Camera is initialized by using OpenCV’s VideoCapture class. The path obtained above (e.g.
/dev/video3) is passed to the constructor. Set the resolution and format using OpenCV
properties:

​ *settings to capture high-quality frames for facial detection.

Note: configure OpenCV to your preference in regards to directory structure. This guide is
concerned with how we used OpenCV alongside our camera and BeagleBoard

3. Setting up a Python environment for Image Processing.
*refer to guide.txt

3.1 This step is necessary to set up a Python environment for facial recognition. Ensuring all
libraries such as face_recognition.dlib (for facial detection and recognition) and python-dotenv
(for managing environment variables) are installed properly.

3.2 Download the appropriate Miniconda installer and run it
Apple Silicon (arm64)
Curl -0 https://repo.anaconda.com/miniconda/Miniconda3-latest-MacOSX-arm64.sh

Intel(x86_64)
Curl -0 https://repo.anaconda.com/miniconda/Miniconda3-latest-MacOSX-x86_64.sh

Linux
Curl -0 https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh

​ *replace <your_arch> with arm64 or x86_64

3.3 Install and verify Conda
​ source ~/.bashrc
​ conda --version

3.4 Create and activate a Conda environment. This ensures compatibility with the
face_recognition library.
​ conda create -n faceenv python=3.10 -y && conda activate faceenv && conda install -c conda-forge dlib -y

3.5 Install the required Python libraries for facial recognition
​ ip install face_recognition python-dotenv requests

4. Processing the Captured Image

4.1 Load the Haar Cascade file for face detection. It is a pre-trained model that OpenCV uses to
detect faces. It contains data to identify features such as eyes,nose, and the mouth. It is
required by the detectMultiScale function to perform its task.

4.2 Use OpenCV to capture and load the image frame:

​ *cap >> frame is OpenCV shorthand to capture a frame from video stream. Cap is an
instance of the class VideoCapture, and is stored as a Mat object in the frame variable.
​ *This operation reads the next frame from the camera and stores it in the frame object
for further use.

4.3 Save the captured image and write it to the appropriate directory.

​ *Random number is appended for uniqueness

*We want our components to communicate effectively, a UDP message is sent to alert
that the image is ready for processing.

4.4 Process image for facial recognition. After the image is saved, a Python script
(process_new_person()) picks up the image for facial recognition. The script below will load the
saved image, extract facial encodings, and compare to known encodings in our
authorized_personal directory.

a.​ load_known_encodings() function loads known personnel facial encodings
b.​ Script scans new_person directory for newly saved images
c.​ face_recognition.face_encodings() will extract the necessary facial features from image
d.​ face_recognition.compare_faces() compares with known personnel, and sends a UDP

message.

References/Resources:​
​
Testing using Logitech C270 HD Webcam:
https://www.amazon.ca/Logitech-Widescreen-Calling-Recording-960-000694/dp/B004FHO5Y6/
?th=1

Front face detection XML:
https://github.com/opencv/opencv/blob/master/data/haarcascades/haarcascade_frontalface_def
ault.xml

https://www.amazon.ca/Logitech-Widescreen-Calling-Recording-960-000694/dp/B004FHO5Y6/?th=1
https://www.amazon.ca/Logitech-Widescreen-Calling-Recording-960-000694/dp/B004FHO5Y6/?th=1
https://github.com/opencv/opencv/blob/master/data/haarcascades/haarcascade_frontalface_default.xml
https://github.com/opencv/opencv/blob/master/data/haarcascades/haarcascade_frontalface_default.xml

