
How-To Guide
This guide goes over loading, decoding, and playing MP3 vs WAV sounds on the BeagleY-AI

embedded linux board using ALSA and libmpg123. The guide from previous years is slightly

outdated and does not properly install the Libmpg123 library on the BeagleY-AI..

Prerequisites

● GCC, make, CMake, C environment

● Have Zen Hat overlay installed on the embedded device (follow the Zen Cape Audio

Guide for more information)

● ALSA library is installed (follow the Zen Cape Audio Guide for more information)

WAV vs MP3

Some key differences between the audio formats.

Reading Data:
 WAV: No decoding needed (PCM data found after offset 44).

 MP3: Decoded with libmpg123 library. Metadata accessible by the ID3v1 standard.

Compression:
WAV: Is an uncompressed and lossless format storing pulse-code modulation (PCM).

MP3: Is a compressed and lossy format (compressed with MPEG)

File Size:
WAV: Files are much larger because they are lossless

MP3: Files are normally smaller because of their lossy quality

Understanding PCM Data

See the lecture video for understanding PCM data representation:

https://www.youtube.com/watch?v=OiWvHj8j4RE

When trying to include both WAV files and MP3 files, you need to be careful about calculating

the superposition of PCM data; the two file types may have a different number of channels. For

example, the WAV files used in A3 have mono audio while MP3 files generally support stereo

audio.

https://www.youtube.com/watch?v=OiWvHj8j4RE

Based on the number of channels, the number of samples per frame will be different. In mono

audio 1 frame corresponds to 1 sample. In stereo audio, 1 frame consists of both the left and

right samples.

 Mono Representation:

PCM: [S1, S2, S3,..., Sn]

Frame 1= S1, Frame 2= S2, … Frame n = Sn

 Stereo Representation:

PCM: [L1, R1, L2, R2, L3, R3, …, Ln, Rn]

Frame 1= [L1, R1], Frame 2= [L2, R2], … Frame n = [Ln, Rn]

To add mono channel PCM data to dual channel data, you simply need to add the mono sample

to both L1 and R1.

 PCM Combined: [L1+S1, R1+S1, L2+S2, R2+S2, L3+S3, L3+S3, … ,Ln + Sn, Rn + Sn]

Installation For WAV

No additional libraries needed.

Installation For MP3

On the host, install the cross compiler for the libmpg123-dev library:

(host) $ sudo apt-get update

(host) $ sudo apt install libmpg123-dev:arm64

On the target, install the libmpg123-0 library:

(bbg) $ sudo apt-get update

(bbg) $ sudo apt install libmpg123-0

Ensure .so files are installed and present (note that version numbers may differ):

(bbg) $ ls /usr/lib/aarch64-linux-gnu/libmpg*

libmpg.so.0 libmpg.so.0.47.0

Playing Audio using C

This code was modified from this student guide and the A3 template.
The example code below is a simple example that does the following:
 1. Show how to store WAV files to play properly when ALSA is configured for stereo.

2. Provide an example on how to decode, store, and play MP3 files.
It is divided into 3 sections. Configuring ALSA to play dual channel, loading and playing WAV
files, and loading and playing MP3 files.

#include <alsa/asoundlib.h>
#include <alloca.h>
#include <mpg123.h>

#define SAMPLE_RATE 44100
#define NUM_CHANNELS 2

#define SAMPLE_SIZE (sizeof(short))

// Store data of a single wave file read into memory.
// Space is dynamically allocated; must be freed correctly!
typedef struct {
 int numSamples;
 short *pData;
} wavedata_t;

int main()
{
 // configure PCM to dual channel

 snd_pcm_t *pcmHandle;

 // Opens the PCM output
 int err = snd_pcm_open(&pcmHandle, "default", SND_PCM_STREAM_PLAYBACK, 0);
 if (err < 0) {
 printf("Playback open error: %s\n", snd_strerror(err));
 exit(EXIT_FAILURE);
 }

 snd_pcm_set_params(pcmHandle,
 SND_PCM_FORMAT_S16_LE,
 SND_PCM_ACCESS_RW_INTERLEAVED,
 NUM_CHANNELS,
 SAMPLE_RATE,
 1,
 50000);

https://opencoursehub.cs.sfu.ca/bfraser/grav-cms/cmpt433/links/files/2023-student-howtos/PlayMp3FileWithC-MPEG123.pdf

 // Read, store, and play WAV file

 const int PCM_DATA_OFFSET = 44;
 char* fileName = "wave-files/never_gonna.wav";
 wavedata_t wavedata;

 // Open the WAV file

 FILE *file = fopen(fileName, "r");

 if (file == NULL) {
 fprintf(stderr, "ERROR: Unable to open file %s.\n", fileName);
 exit(EXIT_FAILURE);
 }

 // Get file size
 fseek(file, 0, SEEK_END);
 int sizeInBytes = ftell(file) - PCM_DATA_OFFSET;
 wavedata.numSamples = sizeInBytes / SAMPLE_SIZE;

 // Search to the start of the data in the file
 fseek(file, PCM_DATA_OFFSET, SEEK_SET);

 // Allocate space to hold all PCM data
 wavedata.pData = malloc(sizeInBytes);
 if (wavedata.pData == 0) {
 fprintf(stderr, "ERROR: Unable to allocate %d bytes for file %s.\n",
 sizeInBytes, fileName);
 exit(EXIT_FAILURE);
 }

 // Read PCM data from wave file into memory
 int samplesRead = fread(wavedata.pData, SAMPLE_SIZE, wavedata.numSamples, file);
 if (samplesRead != wavedata.numSamples) {
 fprintf(stderr, "ERROR: Unable to read %d samples from file %s (read %d).\n",

wavedata.numSamples, fileName, samplesRead);
 exit(EXIT_FAILURE);
 }

 // Duplicate the elements of the array
 // e.g. [1,2,3,4] -> [1,1,2,2,3,3,4,4]
 wavedata_t stereoWavedata;
 stereoWavedata.numSamples = wavedata.numSamples*2;
 stereoWavedata.pData = malloc(sizeInBytes*2);

 for (int i=0; i<wavedata.numSamples; i++)
 {
 stereoWavedata.pData[2*i] = wavedata.pData[i];
 stereoWavedata.pData[2*i+1] = wavedata.pData[i];

 }
 // Play WAV audio

 snd_pcm_prepare(pcmHandle);
 snd_pcm_writei(pcmHandle, stereoWavedata.pData, stereoWavedata.numSamples /

NUM_CHANNELS / sizeof(short));

 // Read, store, and play MP3 file

 mpg123_init();

 mpg123_handle *mp3Handle = mpg123_new(NULL, NULL);
 unsigned char* mp3Buffer;
 size_t mp3BufferSize;

 char* mp3Filename = "mp3-files/never_gonna.mp3";
 if (mpg123_open(mp3Handle, mp3Filename) != MPG123_OK)
 {
 perror("Failed to open MP3 file");
 return 0;
 }

 mp3BufferSize = mpg123_outblock(mp3Handle);
 mp3Buffer = (unsigned char*)malloc(mp3BufferSize * sizeof(unsigned char));

 // Gets the information. Sample code does not use the information
 int numChannels, encoding;
 unsigned int bitRate;
 mpg123_getformat(mp3Handle, (long*)&bitRate, &numChannels, &encoding);

 // Play MP3 Audio
 size_t bytesRead = 0;
 while (mpg123_read(mp3Handle, mp3Buffer, mp3BufferSize, &bytesRead) == MPG123_OK)

 {
 snd_pcm_prepare(pcmHandle);
 snd_pcm_writei(pcmHandle, mp3Buffer, bytesRead / NUM_CHANNELS / sizeof(short));
 }

 // Cleanup

 free(wavedata.pData);
 free(stereoWavedata.pData);

 free(mp3Buffer);
 snd_pcm_close(pcmHandle);
 mpg123_close(mp3Handle);
 mpg123_delete(mp3Handle);
 return 0;
}

Compiling

Ensure that there is a linker flag in your CMakeLists.txt that points to the libmpg123 library.
 add_compile_options(-lmpg123)

 add_link_options(-lmpg123)

Make sure that your project makefile links the ALSA library (follow the Zen Cape Audio Guide

for more information).
 # ALSA support

 find_package(ALSA REQUIRED)

 target_link_libraries(music_player LINK_PRIVATE asound)

If you are referencing local audio files in your program, it may be a reasonable idea to copy

them to the build directory.

In the following example, the program is set to read audio files from the wave-files directory:
 # Copy the WAV folder to NFS

 add_custom_command(TARGET music_player POST_BUILD

 COMMAND "${CMAKE_COMMAND}" -E copy_directory

 "${CMAKE_SOURCE_DIR}/wave-files"

 "~/cmpt433/public/myApps/wave-files"

 COMMENT "Copying WAV files to public NFS directory")

Troubleshooting

- No Sound Playing - Make sure an audio device is plugged in to the audio jack. There is

no built-in speaker on the BeagleY-AI.

- WAV file playing at 2 times speed - Need to duplicate the mono channel PCM data

- E.g. [1,2,3,4] -> [1,1,2,2,3,3,4,4]

- MP3 file playing at half speed - Likely configured the ALSA audio device to play using

mono audio. Change the configuration to stereo audio.

- mpg123_read() != MPG123_OK on first call.
- You can either ignore the first call to mpg123_read() and continue reading or
- Call the mpg123_getformat() function before mpg123_read()

Additional Notes

Libmpg123 supports extracting metadata (see Extra Information from this guide)

https://opencoursehub.cs.sfu.ca/bfraser/grav-cms/cmpt433/links/files/2023-student-howtos/PlayMp3FileWithC-MPEG123.pdf

	Hardware he can lend https://opencoursehub.cs.sfu.ca/bfraser/grav-cms/cmpt433/project/files/HardwareToLend.pdf
	Possible ideas (good and bad)
	Group Information
	Topic description (1-2 paragraphs):
	Time-line/Project plan (~10 lines):

	Milestone 2
	Project Overview
	Significant accomplishments
	Roadblock/ Unexpected Challenges
	Difference between planned vs completed features
	Proof of Accomplishment

	Final Write up
	System Explanation
	Feature table (1-2 pages) Table of important product features
	Extra Hardware & Software Used

	How-To Guide
	Prerequisites
	WAV vs MP3
	Understanding PCM Data
	Installation For WAV
	Installation For MP3
	Playing Audio using C
	Compiling
	Troubleshooting
	Additional Notes

