
Interfacing	with	the	BlueZ	D-Bus	API	in	C	

If	an	application	on	a	Linux	system	wishes	to	do	anything	with	bluetooth,	it	will	be	doing	so	through	BlueZ,	the	bluetooth	linux	stack.	Unlike	other
Linux	subsystems,	such	as	ALSA,	that	provide	their	userspace	API	as	a	C	library,	BlueZ	exposes	its	userspace	API	through	D-Bus	(Desktop	Bus).	D-
Bus	is	an	inter-process	communication	system	that	allows	for	flexible,	language-agnostic	communication	between	system	services	and
applications.	

While	BlueZ	and	D-Bus	are	each	individually	fairly	well-documented,	information	on	using	them	together	is	quite	sparse,	especially	for
application’s	written	in	C.	This	guide	strives	to	collect	the	information	necessary	to	get	started	with	writing	C	applications	that	use	D-Bus,	and
more	specifically,	interact	with	the	BlueZ	bluetooth	daemon	through	the	GLib	D-Bus	binding.	

D-Bus	Basics	

Architecture	

The	D-Bus	system	can	be	thought	of	as	a	network	between	processes	within	a	machine.	Moreover,	processes	on	the	D-Bus	network	follow	a	client-
server	architecture,	where,	for	example,	a	user	application	is	a	client,	and	a	system-daemon	like	BlueZ	is	a	server.	

Message	Buses	

The	D-Bus	network	of	a	machine	running	D-Bus	is	exposed	to	processes	as	a	system	daemon	called	a	message-bus,	which	is	like	a	central	router
that	takes	a	message	from	a	process	and	routes	it	to	its	intended	recipient	process.	In	practice,	there	are	two	such	message	buses	available	to
processes	on	a	machine:	the	session-bus	and	the	system-bus.	The	session-bus	is	for	user-level	applications	to	talk	amongst	each	other,	and	the
system-bus	is	for	user-level	applications	to	talk	to	system-level	services.	

The	BlueZ	daemon,	being	a	system-level	service,	is	found	on	the	system-bus.	

Service	Names	

To	distinguish	processes	connected	to	a	message	bus,	each	process	is	assigned	a	unique	connection	name.	In	networking	terms,	this	is	like	a	device
address.	Unique	connection	names	always	begin	with	a	colon	character	(:).	To	make	discovering	and	connecting	to	specific	services	more
convenient,	applications	can	also	reserve	for	themselves	well-known	names.	In	networking	terms,	the	well-known	name	is	like	a	website	URL.	It
acts	as	a	memorable,	human	readable	identifier	for	the	process.	

The	BlueZ	daemon	goes	by	the	well-known	name	org.bluez.	

To	see	the	names	of	all	processes	currently	connected	to	both	the	session	and	system	busses,	we	can	use	the	busctl	list	command:	

$	busctl	list
NAME																													PID	PROCESS									USER												CONNECTION
:1.0																													395	systemd-resolve	systemd-resolve	:1.0						
:1.1																													379	systemd-network	systemd-network	:1.1						
:1.12																												961	systemd									user												:1.12					
:1.13																												982	pipewire-pulse		user												:1.13					
:1.14																												980	pipewire								user												:1.14					
:1.15																												981	wireplumber					user												:1.15					
:1.16																												979	pipewire								user												:1.16					
:1.17																												993	rtkit-daemon				root												:1.17					
:1.18																											1003	polkitd									polkitd									:1.18					
:1.19																												981	wireplumber					user												:1.19					
:1.2																															1	systemd									root												:1.2						
:1.3																													514	avahi-daemon				avahi											:1.3						
:1.37																											1413	busctl										user												:1.37					
:1.4																													640	systemd-logind		root												:1.4						
:1.5																													550	iwd													root												:1.5						
:1.6																													826	bluetoothd						root												:1.6						
:1.7																													790	unattended-upgr	root												:1.7						
:1.9																													861	mender										root												:1.9						
com.ubuntu.SoftwareProperties						-	-															-															(activatable)
io.mender.AuthenticationManager		861	mender										root												:1.9									
io.mender.UpdateManager										861	mender										root												:1.9									
net.connman.iwd																		550	iwd													root												:1.5									
org.bluez																								826	bluetoothd						root												:1.6									
	

(Some	columns	and	rows	were	ommited	from	the	above	output)	

Objects	

A	process	on	a	message-bus	can	expose	a	number	of	objects	to	other	processes.	Examples	of	objects	exposed	by	the	BlueZ	daemon	process
include	bluetooth	adapters,	connected	bluetooth	devices,	and	the	BlueZ	daemon	itself.	Objects	in	a	process	are	distinguished	by	their	unique
object	path.	An	object	path	looks	like	a	filesystem	filepath,	with	strings	separated	by	forward	slashes.	While	an	object	path	does	not	need	to	follow
any	specific	structure,	it	is	often	formatted	to	reflect	the	tree-like	ownerships	between	objects	within	a	process,	as	is	the	case	with	BlueZ’s	object
paths.	

The	object	path	of	a	bluetooth	adapter	in	the	BlueZ	daemon	process	looks	like	/org/bluez/hci0,	where	hci0	is	the	name	of	the	adapter’s	object
instance	name,	and	/org/bluez/	is	the	parent	BlueZ	daemon	object	that	owns	it.	

The	object	path	of	a	bluetooth	device	looks	like	/org/bluez/hci0/dev_0C_02_BD_78_41_0B,	where	dev_0C_02_BD_78_41_0B	is	the	device
object	itself,	and	the	path	prefix	/org/bluez/hci0/	indicates	that	the	device	was	connected	and	owned	by	the	adapter	hci0.	

To	see	the	all	the	objects	under	a	particular	connection,	we	can	use	the	busctl	tree	command:	

$	busctl	tree	org.bluez
└─	/org
		└─	/org/bluez
				└─	/org/bluez/hci0
						└─	/org/bluez/hci0/dev_AB_CD_EF_GH_IJ_KL
								├─	/org/bluez/hci0/dev_AB_CD_EF_GH_IJ_KL/fd0
								├─	/org/bluez/hci0/dev_AB_CD_EF_GH_IJ_KL/player0
								├─	/org/bluez/hci0/dev_AB_CD_EF_GH_IJ_KL/sep1
								├─	/org/bluez/hci0/dev_AB_CD_EF_GH_IJ_KL/sep2
								├─	/org/bluez/hci0/dev_AB_CD_EF_GH_IJ_KL/sep3
								├─	/org/bluez/hci0/dev_AB_CD_EF_GH_IJ_KL/sep4
								└─	/org/bluez/hci0/dev_AB_CD_EF_GH_IJ_KL/sep5
	

Interfaces	

A	D-Bus	interface	defines	a	set	of	related	methods,	signals,	and	properties	that	an	object	on	the	D-Bus	can	expose.	It’s	similar	to	an	interface	in
object-oriented	programming:	it	specifies	what	an	object	can	do,	without	defining	how	it’s	implemented.	

Each	interface	has	a	unique	name	following	a	reverse	domain	name	style.	Examples	of	interfaces	implemented	by	BlueZ	device	objects	are
org.bluez.Device1	and	org.freedesktop.DBus.Properties.	Note	that	the	names	for	these	interfaces	are	namespaced,	in	that	Device1
and	Properties	are	the	actual	interface	names,	and	the	org.bluez.	and	org.freedesktop.DBus.	prefixes	distinguish	who	defined	the
interfaces.	Moreover,	there	are	number	of	standard	interfaces	specified	by	D-Bus,	of	which	org.freedesktop.DBus.Properties	is	an	example.	

By	sending	the	appropriate	message	to	the	message-bus,	an	application	can	call	a	method	on	an	object’s	interface	in	another	process,	or	read/
write	one	of	its	properties.	An	example	of	a	method	on	the	org.freedesktop.DBus.Properties	interface	is	the	Get	method,	which	takes	the
name	of	a	property	of	an	object	and	returns	its	value.	

Additionally,	an	application	can	subscribe	to	signals	on	an	object.	An	example	of	a	signal	on	the	org.freedesktop.DBus.Properties	interface
is	the	PropertiesChanged	signal,	which	notifies	subscribers	when	any	one	of	the	object’s	properties	has	changed.	

To	see	the	definition	of	an	interface	implemented	by	an	object,	as	well	as	the	current	values	of	properties	on	that	interface,	use	the	command
busctl	introspect	<bus	name>	<object	path>	<interface	name>:	

$	busctl	introspect	org.bluez	/org/bluez/hci0/dev_0C_02_BD_78_41_0B	org.bluez.Device1
NAME															TYPE						SIGNATURE	RESULT/VALUE																													FLAGS
.CancelPairing					method				-									-																																								-
.Connect											method				-									-																																								-
.ConnectProfile				method				s									-																																								-
.Disconnect								method				-									-																																								-
.DisconnectProfile	method				s									-																																								-
.Pair														method				-									-																																								-
.Adapter											property		o									"/org/bluez/hci0"																								emits-change
.Address											property		s									"AB:CD:EF:GH:IJ:KL"																						emits-change
.AddressType							property		s									"public"																																	emits-change
.Alias													property		s									"Samsung	Phone"																										emits-change	writable
.Appearance								property		q									-																																								emits-change
.Blocked											property		b									false																																				emits-change	writable
.Bonded												property		b									true																																					emits-change
.Class													property		u									5898764																																		emits-change
.Connected									property		b									true																																					emits-change
.Icon														property		s									"phone"																																		emits-change
.LegacyPairing					property		b									false																																				emits-change
.ManufacturerData		property		a{qv}					-																																								emits-change
.Modalias										property		s									"bluetooth:v0075p0100d0201"														emits-change
.Name														property		s									"Samsung	Phone"																										emits-change

.Paired												property		b									true																																					emits-change

.RSSI														property		n									-																																								emits-change

.ServiceData							property		a{sv}					-																																								emits-change

.ServicesResolved		property		b									true																																					emits-change

.Trusted											property		b									false																																				emits-change	writable

.TxPower											property		n									-																																								emits-change

.UUIDs													property		as								18	"00001105-0000-1000-8000-00805f9b34f…	emits-change

.WakeAllowed							property		b									-																																								emits-change	writable
	

To	see	all	the	interfaces	of	an	object	and	their	definitions/values,	use	busctl	introspect	without	specifying	an	interface.	

Types	

The	D-Bus	type	system	defines	how	data	is	encoded	and	transmitted	between	processes.	It’s	a	compact,	strongly-typed	system	designed	to	be
language-agnostic,	while	at	the	same	time	having	close	mappings	to	types	available	in	most	programming	languages.	

Every	value	sent	over	D-Bus	is	associated	with	a	type	signature:	a	string	of	characters	which	describes	the	format	and	structure	of	the	type.	For
example,	the	type	signature	of	a	lone	string	is	s,	and	the	type	signature	of	an	array	of	strings	is	a{s}.	

From	the	output	

$	busctl	introspect	org.bluez	/org/bluez/hci0	org.freedesktop.DBus.Properties
NAME																												TYPE						SIGNATURE	RESULT/VALUE	FLAGS
.Get																												method				ss								v												-
.GetAll																									method				s									a{sv}								-
.Set																												method				ssv							-												-
.PropertiesChanged														signal				sa{sv}as		-												-
	

,	we	can	see	that	the	type	signature	of	the	Get	method’s	parameters	is	ss,	and	the	type	signature	of	its	return	value	is	v.	That	is,	the	Get	method
takes	two	parameters	of	type	string,	and	returns	a	single	value	of	type	variant.	

Proxies	

A	D-Bus	proxy	is	a	local,	in-process	object	that	acts	as	a	client-side	representation	of	a	remote	D-Bus	object.	Instead	of	manually	constructing	and
sending	D-Bus	messages,	you	interact	with	the	proxy	as	if	it	were	a	normal	object	with	methods,	properties,	and	signals.	The	proxy	handles	all	the
message-passing	under	the	hood.	Moreover,	proxies	facilitate	the	mapping	of	D-Bus	objects	to	objects	in	a	programming	framework’s	type
system,	such	as	a	java.lang.Object	in	java,	or	a	GObject	in	glib.	

GDBus:	The	GLib	D-Bus	Binding	

D-Bus	bindings	are	available	for	many	languages	to	make	developing	an	application	that	interfaces	with	D-Bus	more	convenient.	A	D-Bus	binding
is	a	library	that	interfaces	a	programming	language	or	framework	to	the	D-Bus	system,	making	it	easier	to	send	and	receive	messages	without
dealing	with	low-level	D-Bus	message	protocol	details.	Moreover,	bindings	provide	high-level	APIs	that	map	D-Bus	concepts	like	buses,	object
paths,	interfaces,	methods,	and	signals	into	language-native	constructs	such	as	classes,	objects,	and	function	calls.	

GDBus,	which	is	the	GLib	library’s	D-Bus	binding,	is	today’s	standard	D-Bus	binding	for	applications	written	in	C.	While	C	itself	has	no	builtin	OOP
constructs,	GLib	provides	the	GObject	type	system	that	implements	OOP	in	C,	thus	allowing	GDBus	to	have	a	convenience	almost	on	par	with	the
D-Bus	bindings	for	other	languages.	

GLib	Installation	

Installing	on	Target	

To	install	glib	on	the	BeagleY-AI,	connect	with	ssh	and	run	

sudo	apt	update
sudo	apt	install	libglib2.0-0
	

Cross-compiling	

To	cross-compile	an	application	using	glib	on	a	Debian	host,	we	need	to	add	the	arm64	architecture:	

sudo	dpkg	--add-architecture	arm64
	

,	install	the	arm64	version	of	the	libglib	dev	package:	

sudo	apt	update
sudo	apt	install	libglib2.0-dev:arm64

	

and	install	the	arm64	cross	compiling	packages:	

sudo	apt	install	crossbuild-essential-arm64
	

To	link	the	glib	and	gio	libraries	to	a	target	in	our	CMakeLists.txt	file,	we	use	pkg-config:	

#	File:	CMakeLists.txt

...
find_package(PkgConfig	REQUIRED)
pkg_check_modules(deps	REQUIRED	IMPORTED_TARGET	glib-2.0	gio-2.0)
target_link_libraries(target	PkgConfig::deps)
...
	

Now,	when	cross-compiling,	we	need	to	make	sure	CMake	uses	the	arm64	version	of	pkg-config	to	discover	the	arm64	dev	libraries.	We	do	this
by	setting	the	PKG_CONFIG_EXECUTABLE	variable	in	a	toolchain	file:	

#	File:	aarch64-linux-gnu.cmake

#	the	name	of	the	target	operating	system
set(CMAKE_SYSTEM_NAME	Linux)
set(CMAKE_SYSTEM_PROCESSOR	aarch64)

#	which	compilers	to	use	for	C	and	C++
set(CMAKE_C_COMPILER			/usr/bin/aarch64-linux-gnu-gcc)
set(CMAKE_CXX_COMPILER	/usr/bin/aarch64-linux-gnu-g++)

#	where	is	the	target	environment	located
set(CMAKE_FIND_ROOT_PATH	/usr/aarch64-linux-gnu)
set(CMAKE_INCLUDE_PATH		/usr/include/aarch64-linux-gnu)
set(CMAKE_LIBRARY_PATH		/usr/lib/aarch64-linux-gnu)
set(CMAKE_PROGRAM_PATH		/usr/bin/aarch64-linux-gnu)

#	adjust	the	default	behavior	of	the	FIND_XXX()	commands:
#	search	programs	in	the	host	environment
set(CMAKE_FIND_ROOT_PATH_MODE_PROGRAM	NEVER)

set(PKG_CONFIG_EXECUTABLE	aarch64-linux-gnu-pkg-config)

#	search	headers	and	libraries	in	the	target	environment
set(CMAKE_FIND_ROOT_PATH_MODE_LIBRARY	BOTH)
set(CMAKE_FIND_ROOT_PATH_MODE_INCLUDE	BOTH)
	

and	configure	CMake	with	this	toolchain	file:	

cmake	-DCMAKE_TOOLCHAIN_FILE=path/to/toolchain/file/aarch64-linux-gnu.cmake	-S	.	-B	build
	

GDBusProxy	

The	type	to	represent	a	D-Bus	proxy	in	GDBus	is	GDBusProxy.	To	create	a	GDBusProxy	for	an	object	with	a	known	path,	we	can	use	one	of	the
g_dbus_proxy_new()	or	g_dbus_proxy_new_for_bus()	functions.	For	example,	

GDBusProxy	*adapter_proxy	=	g_dbus_proxy_new_for_bus_sync(
				G_BUS_TYPE_SYSTEM,														//	Message	Bus
				G_DBUS_PROXY_FLAGS_NONE,								//	Flags
				NULL,																											//	Interface	info
				"org.bluez",																				//	Bus	name
				"/org/bluez/hci0",														//	Object	path
				"org.bluez.Adapter1",											//	Interface	Name
				NULL,																											//	GCancellable
				&error
);
	

creates	a	proxy	for	the	org.bluez.Adapter1	interface	on	the	/org/bluez/hci0	adapter	object	instance.	

https://docs.gtk.org/gio/class.DBusProxy.html

With	a	proxy	in	hand,	we	can	easily	call	methods	for	that	proxy.	To	call	the	StartDiscovery	method	on	org.bluez.Adapter1	proxy,	we	use
g_dbus_proxy_call():	

GVariant	*result	=	g_dbus_proxy_call_sync(adapter_proxy,												//	Proxy	object
																																										"StartDiscovery",									//	Method	name
																																										NULL,																					//	Parameters
																																										G_DBUS_CALL_FLAGS_NONE,			//	Flags
																																										-1,																							//	Timeout
																																										NULL,																					//	GCancellable
																																										&error);
	

Something	important	to	note	here	is	that	to	wrap	values	for	the	D-Bus	type	system,	GLib	has	the	GVariant	type.	Method	calls	on	objects/proxies
take	a	GVariant	as	a	parameter	(we	set	parameters	to	NULL	for	StartDiscovery	since	it	takes	no	parameters),	and	return	a	GVariant.	

Setting/getting	a	property	of	a	proxy	can	be	done	by	calling	the	Set	and	Get	methods	of	the	org.freedesktop.DBus.Properties	interface:	

GVariant	*param	=	g_variant_new("(ss)",
																																"org.bluez.Adapter1",
																																"Powered");

GVariant	*property_value	=	g_dbus_proxy_call_sync(adapter_proxy,
																																																		"org.freedesktop.DBus.Properties.Get",
																																																		param,
																																																		G_DBUS_CALL_FLAGS_NONE,
																																																		-1,
																																																		NULL,
																																																		error);

g_variant_unref(param);
	

This	gets	the	value	of	the	Powered	property	on	the	org.bluez.Adapter1	interface.	From	this	example,	we	can	see	that	it	is	possible	to	call	a
method	on	a	different	interface	than	the	one	that	a	proxy	currently	represents.	

GDBusProxy	Signals	

One	of	the	great	benefits	of	using	proxies	is	being	able	to	easily	subscribe	to	signals	on	a	D-Bus	object.	A	very	useful	signal	available	to
GDBusProxy	instances	is	the	g-properties-changed	signal.	This	signal	fires	when	any	one	of	the	proxy’s	properties	changes	value.	To	subscribe
to	this	signal	on	our	adapter	proxy,	we	use	

g_signal_connect(adapter_proxy,
																	"g-properties-changed",
																	G_CALLBACK(property_changed_cb),
																	NULL);
	

where	property_changed_cb	is	the	callback	to	be	called	when	a	property	changes.	Now,	whenever	a	property	changes,	we	can	do	something
like	print	a	message	indicating	such:	

void	property_changed_cb(GDBusProxy	*proxy,
																						GVariant	*changed_properties,
																						const	gchar	*const	*invalidated_properties)
{
				(void)proxy;
				(void)invalidated_properties;

				GVariantIter	*iter;
				const	gchar	*key;
				GVariant	*value;

				g_variant_get(changed_properties,	"a{sv}",	&iter);

				while	(g_variant_iter_loop(iter,	"{&sv}",	&key,	&value))
				{
								gchar	*value_str	=	g_variant_print(value,	FALSE);
								g_print("Property	%s	changed	value	to:	%s",	key,	value_str);
								g_free(value_str);
				}
				g_variant_iter_free(iter);

https://docs.gtk.org/glib/struct.Variant.html
https://docs.gtk.org/gio/signal.DBusProxy.g-properties-changed.html

}
	

GDBusObjectManagerClient	

The	D-Bus	standard	interface	org.freedesktop.DBus.ObjectManager	is	a	very	useful	interface	for	seeing	which	objects	are	present	on	a	D-
Bus	connection,	and	also	for	getting	notified	when	objects	appear	or	disappear	on	a	connection.	Since	bluetooth	devices	frequently	connect	and
disconnect,	and	bluetooth	profiles	on	those	devices	appear	and	disappear,	it	would	serve	us	well	to	make	use	of	the
org.freedesktop.DBus.ObjectManager	interface	within	a	bluetooth	application.	Luckily,	the	BlueZ	daemon	implements
org.freedesktop.DBus.ObjectManager,	and	moreover,	GDBus	provides	the	GDBusObjectManagerClient	type	for	accessing	the	interface
more	conveniently.	

To	create	a	GDBusObjectManagerClient	for	the	BlueZ	daemon,	we	do	

GDBusObjectManagerClient	*manager	=	
				g_dbus_object_manager_client_new_for_bus_sync(G_BUS_TYPE_SYSTEM,
																																																		G_DBUS_OBJECT_MANAGER_CLIENT_FLAGS_NONE,
																																																		"org.bluez",
																																																		"/",
																																																		NULL,	NULL,	NULL,	NULL,
																																																		&error);
	

To	get	notified	whenever	objects	are	added	or	removed	from	BlueZ,	we	can	connect	to	the	[object-added]	and	[object-removed]	signals	of
GDBusObjectManagerClient:	

g_signal_connect(manager,
																	"object-added",
																	G_CALLBACK(on_object_added),
																	NULL);

g_signal_connect(manager,
																	"object-removed",
																	G_CALLBACK(on_object_removed),
																	NULL);
	

To	avoid	having	to	attach	a	callback	on	every	proxy	in	our	application,	we	can	also	use	the	interface-proxy-properties-changed	signal	of
GDBusObjectManagerClient,	and	get	notified	whenever	a	property	changes	on	any	interface	under	the	BlueZ	daemon.	

Resources	
DBus	Tutorial:	Good	overview	of	DBus	constructs
DBus	Specification
GIO	Documentation:	Documentation	for	the	GIO	library	of	GLib,	under	which	GDBus	is	implemented	

Useful	Tools	
bluetoothctl:	A	terminal	client	for	BlueZ	that	demonstrates	almost	all	of	the	capabilities	available	through	BlueZ’s	DBus	interface.	Worth
exploring	how	to	setup	agents,	connect	to	devices,	and	use	the	player	menu	through	this	tool.
busctl:	As	seen	in	the	D-Bus	basics	section	of	the	guide,	busctl	is	a	very	useful	D-Bus	utility	that	abstracts	away	the	nitty	gritty	of
interacting	with	D-Bus.	I	found	this	useful	for	exploring	the	BlueZ	object	tree	and	testing	method	calls	and	getting	and	setting	properties.
Use	tab	completion	judiciously	with	this	tool.	

Some	BlueZ	D-Bus	Objects	and	Interfaces	
Object	Path	 Description	 Relevant	Interfaces	

/	 BlueZ	bus	root	 org.freedesktop.DBus.ObjectManager	
/org/bluez	 BlueZ	managers	 org.bluez.AgentManager1,	
/org/bluez/hciX	 Bluetooth	Adapter	org.bluez.Adapter1	
/org/bluez/hciX/dev_XX_XX_XX_XX_XX_XX	 Remote	Device	 org.bluez.Device1	
/org/bluez/hciX/dev_XX_XX_XX_XX_XX_XX/
playerX	

Media	Controller	 org.bluez.MediaPlayer1,	org.freedesktop.DBus.Properties	

/org/bluez/hciX/dev_XX_XX_XX_XX_XX_XX/fdX	 Media	Transport	 org.bluez.MediaTransport1	

https://docs.gtk.org/gio/class.DBusObjectManagerClient.html
https://docs.gtk.org/gio/signal.DBusObjectManagerClient.interface-proxy-properties-changed.html
https://dbus.freedesktop.org/doc/dbus-tutorial.html
https://dbus.freedesktop.org/doc/dbus-specification.html
https://docs.gtk.org/gio/index.html
https://dbus.freedesktop.org/doc/dbus-specification.html#standard-interfaces-objectmanager
https://man.archlinux.org/man/org.bluez.AgentManager.5.en
https://man.archlinux.org/man/extra/bluez-utils/org.bluez.Adapter.5.en
https://man.archlinux.org/man/extra/bluez-utils/org.bluez.Device.5.en
https://man.archlinux.org/man/extra/bluez-utils/org.bluez.MediaPlayer.5.en
https://dbus.freedesktop.org/doc/dbus-specification.html#standard-interfaces-properties
https://man.archlinux.org/man/extra/bluez-utils/org.bluez.MediaTransport.5.en

