
Accessing the AK09916 Magnetometer via I2C
Passthrough on the ICM-20948

1.​Introduction
This guide explains how to access and read raw magnetometer data from the
AK09916, an embedded 3-axis magnetometer within the ICM-20948 IMU, using
I2C passthrough mode on a Raspberry Pi Pico W (Pico 2W).

The AK09916 is not directly connected to the host microcontroller — instead, it
sits behind the ICM-20948 and requires proper configuration to communicate
over I2C.

This step-by-step guide walks through:

●​ Wiring the ICM-20948 to the Pico 2W
●​ Enabling passthrough mode via register configuration
●​ Verifying the connection by reading the WHO_AM_I register
●​ Reading and converting raw magnetometer data
●​ Common troubleshooting issues and fixes

All steps assume a basic familiarity with I2C, C/C++ development with the Pico
SDK, and serial debugging via USB.

2.​Hardware Setup

2.1 Pinouts

Figure 1: Raspberry Pi Pico W Pinout

For an I2C connection, you can use either i2c0 or i2c1 on the Raspberry Pi Pico. Use
female-to-female jumper wires to connect the SDA (Serial Data) and SCL (Serial Clock)
pins on the Pico to the corresponding SDA and SCL pins on the ICM-20948.

Additionally, connect 3.3V (3V3) from the Pico to VDD on the ICM-20948, and connect
GND to GND.

Figure 2: ICM-20948 Pinout

2.2 Initializing I2C and Read/Write from a Register

Once you have the physical pins connected, the next step is to create a C++ project
using the Pico SDK. You’ll need to define which GPIOs are used for I2C communication,
based on the Pico pinout. You must also select the I2C port (either i2c0 or i2c1) and
be aware of the device address on the bus. For the ICM-20948, the I2C address is
usually 0x68, but it may be 0x69 depending on your breakout board's AD0 pin.

constexpr uint8_t SDA_PIN = 18;

constexpr uint8_t SCL_PIN = 19;

constexpr auto I2C_PORT = i2c1;

This init function:

●​ Initializes i2c1 at 400kHz (standard fast mode)

●​ Sets the GPIOs to I2C function mode

●​ Enables internal pull-ups (required for I2C communication)

void ICM20948::init() const {

 i2c_init(i2c_, 400'000);

 gpio_set_function(SDA_PIN, GPIO_FUNC_I2C);

 gpio_set_function(SCL_PIN, GPIO_FUNC_I2C);

 gpio_pull_up(SDA_PIN);

 gpio_pull_up(SCL_PIN);

}

The write_reg() function sends a single byte of data to a specific register on the I2C

device. This is a fundamental operation for configuring the ICM-20948 or any device on

the I2C bus.

void ICM20948::write_reg(uint8_t i2c_addr, uint8_t reg, uint8_t

value) const {

 uint8_t data[2] = {reg, value};

 i2c_write_blocking(i2c_, i2c_addr, data, 2, false);

}

The following helper function allows you to read the value of an 8-bit register from a

given I2C address. It's useful for verifying I2C communication by checking known

registers — such as WHO_AM_I — which can confirm that your setup is working

properly.

uint8_t ICM20948::read_reg(uint8_t i2c_addr, uint8_t reg) const

{

 uint8_t value = 0;

 i2c_write_blocking(i2c_, i2c_addr, ®, 1, true);

 i2c_read_blocking(i2c_, i2c_addr, &value, 1, false);

 return value;

}

This function reads multiple consecutive bytes starting from a given register on an I2C

device.

void ICM20948::read_reg_multi(uint8_t i2c_addr, uint8_t reg,

uint8_t* buf, size_t len) const {

 i2c_write_blocking(i2c_, i2c_addr, ®, 1, true);

 i2c_read_blocking(i2c_, i2c_addr, buf, len, false);

}

3.​Enabling I2C Passthrough Mode

Wake up the IMU and set it to the correct power mode:​
Make sure the device is out of sleep mode by writing 0x01 to PWR_MGMT_1 (register
0x06 in the user bank 0):​
​

write_reg(icm_i2c_adr, 0x06, 0x01); // Wake device and select
auto clock

Enable the I2C Master:​
The ICM-20948 contains an internal I2C master to communicate with the
magnetometer. To enable passthrough, first disable the I2C master by clearing the
relevant bit in the USER_CTRL register.​
​
write_reg(icm_i2c_adr, 0x03, 0x00); // USER_CTRL: disable I2C
master

Enable passthrough mode in INT_PIN_CFG:​
Write 0x02 to the INT_PIN_CFG register (still in user bank 0). This sets the
BY_PASS_EN bit, which allows the host microcontroller to directly access the AK09916.​
​
write_reg(icm_i2c_adr, 0x0F, 0x02); // INT_PIN_CFG: enable I2C
bypass

Verify:​
After enabling bypass mode, you should be able to scan I2C addresses from the Pico
and see the AK09916 at address 0x0C. To confirm communication, read the
magnetometer's WHO_AM_I register (0x01) and check if it returns 0x09.

4.​Reading Magnetometer Data

Once the magnetometer has been configured and I2C passthrough mode is enabled,
you can begin reading raw magnetic field data from the AK09916. Each reading
consists of three 16-bit signed integers representing the X, Y, and Z magnetic field
components.

The standard sequence for reading data is as follows:

1.​ Poll the ST1 (Status 1) register​
Wait until the Data Ready (DRDY) bit is set, indicating new data is available.

2.​ Read six data bytes from HXL to HZH​
These bytes represent the X, Y, and Z axis readings, each in little-endian format
(low byte first).

3.​ Read ST2 (Status 2) register​
This step finalizes the read and clears the DRDY flag. It also contains an
overflow indicator (HOFL bit).

4.​ Check for I2C errors​
If any register returns 0xFF, it typically indicates a failed I2C communication
(e.g., disconnected or misconfigured device).

The function read_magnetometer_raw() in the code block below implements this
full sequence and populates the output parameters with the latest raw data values.

bool ICM20948::read_magnetometer_raw(int16_t& x, int16_t& y,

int16_t& z) {

 // Wait for data ready

 while (!(read_reg(Magnetometer::ADDR, Magnetometer::ST1) &

0x01));

 // Read 6 bytes (X, Y, Z)

 uint8_t data[6];

 read_reg_multi(Magnetometer::ADDR, Magnetometer::HXL, data,

6);

 x = (data[1] << 8) | data[0];

 y = (data[3] << 8) | data[2];

 z = (data[5] << 8) | data[4];

 // Complete transaction by reading ST2

 read_reg(Magnetometer::ADDR, Magnetometer::ST2);

 return true;

}

5.​Troubleshooting
If the magnetometer is not functioning as expected, refer to the following common
issues and solutions:

I2C Device Not Detected

●​ Ensure that SDA and SCL are connected to the correct GPIO pins on the Pico.
●​ Verify that pull-up resistors are in place or that internal pull-ups are enabled via

gpio_pull_up().
●​ Confirm that I2C passthrough mode is enabled (BYPASS_EN bit in INT_PIN_CFG

is set).
●​ Use an I2C scanner to verify the AK09916 appears at address 0x0C.

WHO_AM_I Returns 0xFF or Incorrect Value

●​ Check that the ICM-20948 is out of sleep mode by writing 0x01 to PWR_MGMT_1.
●​ Make sure the correct user bank is selected before reading or writing registers.
●​ Verify that the I2C bus is not busy or held low by another device.

No Magnetometer Readings or All Zeros

●​ Ensure that the AK09916 is placed in continuous measurement mode (write
0x08 to CNTL2).

●​ Poll the ST1 register until the DRDY (Data Ready) bit is set before reading data.
●​ Read the ST2 register after every data read to complete the transaction and clear

DRDY.

Unstable or Noisy Magnetometer Data

●​ Average multiple readings to reduce high-frequency noise.
●​ Check the HOFL (overflow) bit in ST2 to ensure the sensor is operating within

range.
●​ Verify that the ICM-20948 and AK09916 are properly grounded and powered.

●​ Ensure that the wiring is short and shielded from interference if possible.

Code Hangs or Unexpected Behavior

●​ Avoid infinite polling loops; consider adding a timeout when waiting for DRDY.
●​ Check the return value of read_reg() calls; 0xFF may indicate a failed I2C

read.
●​ Insert debug print statements to identify where the code may be stuck.

References

-​ ICM-20948 | InvenSense
-​ Raspberry Pi Pico 2 W Pinout
-​ Hardware APIs - Raspberry Pi Documentation
-​ AK09916 English Datasheet
-​ GitHub - raspberrypi/pico-sdk:

https://invensense.tdk.com/wp-content/uploads/2016/06/DS-000189-ICM-20948-v1.3.pdf
https://datasheets.raspberrypi.com/picow/pico-2-w-pinout.pdf
https://www.raspberrypi.com/documentation/pico-sdk/hardware.html#group_hardware_i2c
https://www.y-ic.es/datasheet/78/SMDSW.020-2OZ.pdf
https://github.com/raspberrypi/pico-sdk

	
	I2C Device Not Detected
	WHO_AM_I Returns 0xFF or Incorrect Value
	No Magnetometer Readings or All Zeros
	Unstable or Noisy Magnetometer Data
	Code Hangs or Unexpected Behavior

