
CMPT433

How-To Guide:
Video Streaming from Beaglebone Green to Host with OpenCV

Qiuhao Zheng

Zhuo Ping Huang (Edmond)

Nguyen Ai Vy Tran (Ivy)

1



This guide shows you how to install OpenCV on both the host and target to allow video and

image transfer from beaglebone green to the host computer efficiently. It introduces how to

compress the image and encode the image to bytes and stored in a vector container. And send the

vector through UDP to host. It is very efficient for video streaming from BBG to the host.

Required Hardware
- Linux-Based Host Computer

- Beaglebone Green Running Linux (Debian)

- Any webcam that connects via USB

Step 1: Install OpenCV on Host (Debian)
Assuming you are running Debian 11.x on Linux. Go to the terminal and run the following

commands to install the required packages.

1. sudo apt-get update

2. sudo apt-get install build-essential

3. sudo apt-get install libopencv-dev

4. sudo apt-get install libgtk-3-dev

5. sudo apt-get install libavcodec-dev

6. sudo apt-get install libavformat-dev

7. sudo apt-get install libswscale-dev

8. sudo apt-get install g++ (If not already installed)

After installing the necessary tools, download the OpenCV:

1. Clone the repository to the local machine:

Run “git clone https://github.com/opencv/opencv.git”

2. Clone the opencv_contrib modules to the local machine:

Run “ git clone https://github.com/opencv/opencv_contrib.git”

3. Create a build folder, install the OpenCV in that folder (can add more modules depends

on what you need it for)

2

https://github.com/opencv/opencv.git
https://github.com/opencv/opencv_contrib.git


Run the following commands:

mkdir build
cd build
cmake -D CMAKE_BUILD_TYPE=RELEASE \

-D CMAKE_INSTALL_PREFIX=/usr/local \
-D INSTALL_C_EXAMPLES=ON \
-D INSTALL_PYTHON_EXAMPLES=OFF \
-D OPENCV_GENERATE_PKGCONFIG=ON \
-D OPENCV_EXTRA_MODULES_PATH=../opencv_contrib/modules \
-D BUILD_EXAMPLES=ON ..

4. Compile and install:

make -j$(nproc)
sudo make install

Step 2: Install OpenCV on BBG (Debian)
OpenCV for arm architecture is different as above.

Install another version OpenCV for cross compiling code with static OpenCV libraries for BBG.

(Use static OpenCV libraries, so no need to install OpenCV on BBG when running the program)

1. Clone the repository to the local machine:

- git clone https://github.com/opencv/opencv.git

2. Clone the opencv_contrib modules to the local machine:

- git clone https://github.com/opencv/opencv_contrib.git

3. Create a build folder, install the OpenCV in that folder. Run the following commands:

mkdir build
cd build
cmake -D CMAKE_BUILD_TYPE=Release \

-D CMAKE_INSTALL_PREFIX=/usr/local/arm-linux-gnueabihf \
-D CMAKE_TOOLCHAIN_FILE=../platforms/linux/arm-gnueabi.toolchain.cmake \
-D BUILD_SHARED_LIBS=OFF \
-D BUILD_TESTS=OFF \
-D BUILD_PERF_TESTS=OFF \
-D BUILD_EXAMPLES=OFF \
-D OPENCV_EXTRA_MODULES_PATH=../opencv_contrib/modules ..

3



Important notes:

- Make sure the toolchain set is arm-gnueabi.toolchain.cmake. So later on, we can

cross-compile the code on the host.

- Make sure SHARED_LIBS=OFF. So we will install a static OpenCV library.

4. Compile and install:

make -j$(nproc)
sudo make install

Step 3: Open Camera, and Compress and Encode the Image
In this section, all codes provided are C++ codes.

Open camera in BBG:

cv::VideoCapture capture(0);

Close camera (release camera resource) in BBG:

capture.release();

Set the resolution of the camera (640x480):

capture.set(cv::CAP_PROP_FRAME_WIDTH, 640);
capture.set(cv::CAP_PROP_FRAME_HEIGHT, 480);

Depending on what you need, you can set it to higher resolution or lower resolution.

Compress and encode the image:

vector<uchar> buf;
cv::imencode(".jpg", frame,buf,vector<int>{cv::IMWRITE_JPEG_QUALITY, 25});

In the code above, the image is compressed into 25% of the original image quality. It can be

50%, or 80% depending on what you need. The image is encoded to bytes and stored in a vector.

We then use UDP to send the vector to the host. This increases the efficiency of video streaming

from beaglebone green to the host. The lower “IMWRITE_JPEG_QUALITY”, the more

efficient.

4



Step 4: Decode the Image and Display it on Host
1. Receive the bytes (stored in vector) from BBG. Decode the bytes to image:

cv::Mat frame = cv::imdecode(cv::Mat(buffer), cv::IMREAD_COLOR);

2. Create a window to display the image:

cv::imshow("frames", frame);

As shown in the figure below, a window named “frame” will be created to display the image (or

video streaming) on the host.

3. If you want to save the image, run:

cv::imwrite(filename, frame);

Note. “filename” includes the path where you want to save the pic.

5



Troubleshooting
- When you run the program, if it shows the error “cannot find opencv.hpp or something

related with opencv library”, it probably means you cross compile the code with dynamic

OpenCV library. On BBG, there is an OpenCV library installed. Check if the

SHARED_LIBS is OFF when you install OpenCV. Reinstall the OpenCV.

- If dependencies are not installed, make sure apt-get update is run first.

- If the webcam is not recognized, check that /dev/video1 or video0 is present. If still not

working, then try changing:

cv::VideoCapture capture(0) to cv::VideoCapture capture(1) in camera.cpp

Receive.cpp : Basic implementation on Host

void receiveFunction(const char* host, int port) {

// Create a UDP socket

int sockfd = socket(AF_INET, SOCK_DGRAM, 0);

if (sockfd < 0) {

std::cerr << "Failed to create socket!" << std::endl;

return;

}

// Set up the server address structure

struct sockaddr_in server_addr;

memset(&server_addr, 0, sizeof(server_addr));

server_addr.sin_family = AF_INET;

server_addr.sin_port = htons(port);

server_addr.sin_addr.s_addr = inet_addr(host);

// Bind the socket to the specified IP address and port

if (bind(sockfd, (struct sockaddr*)&server_addr,

sizeof(server_addr)) < 0) {

std::cerr << "Bind failed!" << std::endl;

return;

}

// Buffer to hold received data

std::vector<uchar> buffer(65536);

6



while (true) {

// Receive data

struct sockaddr_in client_addr;

socklen_t addr_len = sizeof(client_addr);

int recv_len = recvfrom(sockfd, buffer.data(), buffer.size(),

0, (struct sockaddr*)&client_addr, &addr_len);

// If data was received

if (recv_len > 0) {

// Decode the received data as an image

cv::Mat frame = cv::imdecode(cv::Mat(buffer),

cv::IMREAD_COLOR);

// If the image is not empty, display it

if (!frame.empty()) {

cv::imshow("frames", frame);

}

}

}

// Close the socket

close(sockfd);

}

Camera.cpp : Send video feed Implementation on Target

void sendVideoFeed(const char* host, int port) {

// Create a UDP socket

int sockfd = socket(AF_INET, SOCK_DGRAM, 0);

if (sockfd < 0) {

std::cerr << "Failed to create socket!" << std::endl;

return;

}

// Set up the server address structure

struct sockaddr_in server_addr;

memset(&server_addr, 0, sizeof(server_addr));

7



server_addr.sin_family = AF_INET;

server_addr.sin_port = htons(port);

server_addr.sin_addr.s_addr = inet_addr(host);

cv::VideoCapture capture(0);

if (!capture.isOpened()) {

std::cerr << "Failed to open camera" << std::endl;

return;

}

while (true) {

// Capture a frame

cv::Mat frame;

if (capture.read(frame)) {

// Encode the frame as a JPEG image

std::vector<uchar> buf;

cv::imencode(".jpg", frame, buf);

// Send the encoded image

sendto(sockfd, buf.data(), buf.size(), 0, (struct

sockaddr*)&server_addr, sizeof(server_addr));

}

}

// Release the camera and close the socket

capture.release();

close(sockfd);

}

Source for Dependencies:
https://vegastack.com/tutorials/how-to-install-opencv-on-debian-11/

8

https://vegastack.com/tutorials/how-to-install-opencv-on-debian-11/

