
RFID-RC522 Quick Start Guide

Steven Quinn
Don Abance
Sumrit Sanghera
Jun Hong

Last update: April 2024

This documents guides the users through:
1. Setting up SPI in C on the BeagleBone Green
2. Understanding the RC522 hardware
3. Translating that understanding into C code

Table of Contents
1. Setting up SPI

Background
Device Trees🌲

2. Getting started with the RC522
SPI Guide Provided Files
Understanding the RC522 Hardware Layout

3. RC522 Communication
Initialization

Resets
Timer
Mode, ASK, TxControl

FIFO Buffer
4. Provided Sample Code

1/7



1. Setting up SPI

Background
As of April 2024, at this page there is a link to a BeagleBone Green (BBG) Serial Peripheral
Interface (SPI) guide, a direct link to which can be found here (guide) and here (support files).

We recommend using the guide and support files as a starting point for using the RC522 RFID
reader. The support files contain everything required to use SPI on the BBG to communicate with
serial-based devices. There are also files which provide a foundation for using the SPI module to
communicate with the RC522. This guide is meant as an expansion on that information. We
want to provide users with a little more granularity in understanding how to work with the RFID
module — since the SPI guide provides documentation about SPI, and supplies RFID-related
code, but has no direct information about programming for the RC522.

Fully explaining how to read/write RFID tags would likely go over the 5 page limit for this guide.
Instead, we will lay the groundwork for communication with the RC522, and give the user
enough of a general intuitive understanding of its components to be able to take the next steps.

Device Trees🌲
One of the first things to point out about the aforementioned SPI guide is that while they do
show (pg.2) the various configurations for SPI on the BBG — SPI0, SPI1/CS0, SPI1/CS1 — there
is no mention anywhere about device trees. This may be because of a difference in Linux
versions. In our case, we discovered that a device tree had to be enabled to use SPI, and there
was scarce mention of this online.

To check if SPI is enabled, try ls /dev/ on your BBG. If the device tree is enabled, you should
see the various SPI interfaces in the list: spidev0.0, spidev1.0, and spidev1.1, and possibly
others. If there is no sign of these, you will have to enable the device tree; refer to the Zen Cape
Audio Guide (current link) for steps. The device trees are named as such:

BB-SPIDEV0-00A0.dtbo

A list of them can be viewed with the following command:

ls /lib/firmware | grep -E "SPIDEV.*dtbo"

You will want to enable the one that reflects the relevant SPI interface/pinout that you have
chosen (i.e. spidev0, or spidev1) based on the SPI guide’s table. Note: A reboot will be required
after modifying your uEnv.txt file.

Once SPI is enabled on your BeagleBone, use the SPI guide and its provided sample files as a
basis to set up SPI communication in C. We will use this to communicate with the RFID reader.

2/7

https://opencoursehub.cs.sfu.ca/bfraser/grav-cms/cmpt433/links
https://opencoursehub.cs.sfu.ca/bfraser/grav-cms/cmpt433/links/files/2022-student-howtos-ensc351/SPI-On-BBG.pdf
https://opencoursehub.cs.sfu.ca/bfraser/solutions/433/StudentHowToGuides/2022Files-Ensc351/SPI-On-BBG.zip
https://opencoursehub.cs.sfu.ca/bfraser/grav-cms/cmpt433/guides/files/AudioGuide.pdf


2. Getting started with the RC522
We recommend consulting this page for a good explanation of
understanding all of the pins on the RC522. Note that because we are
using the BeagleBone’s SPI interface, the differentiation of functions
between pins will mostly be abstracted away from. Beyond that, the
MFRC522 datasheet contains everything that one should know about
the RFID module. However, it is quite dry and almost 100 pages, so we
will do our best to distill the most important aspects of it.

SPI Guide Provided Files
As mentioned previously, we will build off the SPI guide’s included code. This includes the
following information:

● Initializing SPI
● SPI data transfer
● Example code for reading/writing RC522 registers

One important thing to note is that the SPI guide’s provided RC522 C code does not include
initialization of the RFID module. This is required before one can begin to properly communicate
with the RC522, which may be confusing for potential users. As such, we will use this guide to
talk about the components one must understand in order to initialize the module.

Understanding the RC522 Hardware Layout

Above is the “simplified block diagram” of the MFRC522 (see datasheet §6). As you can see,
there are two primary ways that you, as the host, can interact with the module. One is the
Register Bank, and the other is a FIFO Buffer.

The Register Bank is essentially a group of hardware registers that store bits of information
(typically 1 byte total), where each bit determines a certain aspect of functionality for the
module. When the host modifies bits in these registers, the controller (Contactless UART in the
image) changes its behaviour according to what is depicted in the datasheet. Pages 35-70 (of
95) of the datasheet are entirely dedicated to laying out the functionality of each register’s bits.
In order to get your RC522 up and running, you have to modify the values of certain registers;
more on that later.

3/7

https://lastminuteengineers.com/how-rfid-works-rc522-arduino-tutorial/
https://www.nxp.com/docs/en/data-sheet/MFRC522.pdf


The FIFO Buffer is used primarily as a means of bulk data transfer between host and controller.
This is more efficient than using registers to get large amounts of information from the
controller, because the alternative would be reading register information one byte at a time (one
SPI request per byte). Therefore, when one is attempting to receive information from an RFID
tag, the information is retrieved through the FIFO Buffer instead.

Above: A more detailed block diagram about each aspect of the device.

4/7



3. RC522 Communication

Initialization
Let’s walk through the required steps for initializing the module.

Resets
The first thing to note when beginning work with the RC522 is that upon starting the device, the
persistent storage on the registers will contain whatever they contained the last time it was
used. Therefore, it is recommended to perform a reset on the device to make sure everything is
in an expected state at the beginning of each program run.

There are two kinds of resets one can perform on the module. The first is a hard reset, used by
driving current through the RST pin on the device. The second is by using the SoftReset (see
§10.3) command in the CommandReg. For simplicity, we opted for the hard reset. To
accomplish this on the BeagleBone, all that is required is to write a 0 then 1 to the RST GPIO pin.
Make sure the GPIO pin is configured for “out” before doing so. Note: This will also clear all data
contained in the FIFO buffer.
Here are an example set of commands for using P9.23 as RST via commandline:

config-pin P9_23 gpio

config-pin P9_23 out

echo 0 > /sys/class/gpio/gpio49/value

echo 1 > /sys/class/gpio/gpio49/value

The same commands can be run from a C program.

Timer
The RC522 has a timer unit, which is used for timing of certain communication events. This
timer unit must be set up properly to enable data transmission with the device. This requires
writing several values to TModeReg, TPrescalerReg, and both TReload registers. These values
are calculated using several different formulas that are explained in §8.5 of the datasheet. This
is one area where we will omit detail, as it would take a while to explain all the calculation steps.
Here is what the C code looks like:

RFIDReader_writeReg(TModeReg,

(1 << TMODEREG_TAUTO_BIT) | (0x04 << TMODEREG_TPRESCALER_HI_BIT));

RFIDReader_writeReg(TPrescalerReg, 0x00);

RFIDReader_writeReg(TReloadRegH, 0x01);

RFIDReader_writeReg(TReloadRegL, 0x49);

5/7



Mode, ASK, TxControl
A few things are required for the ModeReg:

● ModeReg’s TxWaitRF bit will make it such that the transmitter waits for the module to
enable its. RF field before beginning data transmission.

● ModeReg’s PolMFin bit will set the polarity of the MFIN pin, which is used to indicate that
a signal is received.

● ModeReg’s CRCPReset bit defines a preset value for the CRC coprocessor, which is used
for CRC calculations utilized during data transmission. See datasheet §8.2.5 for more
information on the CRC coprocessor.

● Using the predefined bit mask values makes this both easy to implement and understand
for future programmers.

RFIDReader_writeReg(ModeReg,

(1 << MODEREG_TXWAITRF_BIT)

| (1 << MODEREG_POLMFIN_BIT)

| (1 << MODEREG_CRCPRESET_BIT));

The TxASKReg is used to force 100% amplitude-shift keying (ASK) modulation, which basically
makes it easier for the reader to differentiate between 1s and 0s in read signals (see Wikipedia
for details).

RFIDReader_writeReg(TxASKReg, 1 << TXASKREG_FORCE100ASK_BIT);

One must also turn on the TxControlReg’s Tx2CW bit to enable the RFID antenna.

uint8_t TxControl = RFIDReader_readReg(TxControlReg);

RFIDReader_readReg(TxControlReg, (TxControl | TXCONTROLREG_ANTENNA_ON_MASK));

FIFO Buffer
Once the aforementioned initialization steps have been taken, the next step is learning how to
work with the FIFO Buffer. Because of the similarity with the provided readReg/writeReg
functions, we will omit the steps (note that code for this is provided in the sample files). The
general process is -- like reading/writing registers -- we pass in our buffers and desired length to
send/receive, and using the FIFODataReg we signify whether we want to read or write. §8.3 of
the datasheet explains in detail how the FIFO buffer is manipulated to read/write information.
As was previously discussed, the FIFO buffer is necessary for receiving bulk data from nearby
RFID tags.

There are also various status-related register bits that can be used to retrieve information about
the FIFO buffer; including how many stored bytes, remaining capacity, etc.

6/7

https://en.wikipedia.org/wiki/Amplitude-shift_keying


4. Provided Sample Code
We have included some sample code which builds off the SPI guide’s sample code, including
RC522 initialization, and functions for working with the FIFO buffer. If the reader would like to
work with the RC522, we recommend they understand the given code before running it. The
associated sections of the datasheet are included as comments for clarity.

All that would be required to extend implementation for reading RFID tag information (i.e. UIDs)
are the following steps:

1. Implementing the RC522’s Transceive ability (see datasheet for details)
2. Using transceive with the correct register changes to get the appropriate information

5. Troubleshooting
● Should you encounter an issue with configuring your RST pin, make sure there are no

other enabled device trees that are using that pin.
● If you encounter issues with the provided code, consult the references listed in the

provided files.
● The RC522 should display a red LED when powered ON. Keep this in mind when making

sure the device is operational.

7/7


