
MIDI Keyboard Guide

Guide has been tested on
BeagleBone (target): Debian 11.8
PC OS (host): Debian 11.8

Formatting
1. Commands for the host Linux’s console are show as:

(host)$ echo "Hello PC world!"
2. Commands for the target (BeagleBone) Linux’s console are shown as:

(bbg)$ echo "Hello embedded world!"
3. Almost all commands are case sensitive.

1. Reading MIDI Keyboard Input Events: Through the Command Line
In order to read the input of a keyboard event, you must install the ALSA library on your
BeagleBone. The guide for how to install the ALSA library can be found in the Zen Cape Audio
Guide by Brian Fraser.1

Once you have completed section 1 of the Zen Cape Audio Guide, you can continue with this
guide.

1. Connect your MIDI keyboard to your BBG through USB.
2. On your BBG, run the command

(bbg)$ aseqdump -l
This is the output that you should expect:

If you do not see your MIDI keyboard in the list, try to reboot your BBG or check your
connection between the BBG and the keyboard.

3. Look at the port number that is listed beside your keyboard.
● In this instance, our keyboard is the MPK mini 3 and the port number for our

keyboard is 20:0.

1 https://opencoursehub.cs.sfu.ca/bfraser/grav-cms/cmpt433/guides/files/AudioGuide.pdf

https://opencoursehub.cs.sfu.ca/bfraser/grav-cms/cmpt433/guides/files/AudioGuide.pdf


4. Once you have verified your port number, you can run either one of these commands:
(bbg)$ aseqdump -p 20:0

(bbg)$ aseqdump -p ‘MPK mini 3’

The event shows when you play the note and when you let go of the note. The note in
the data shows the actual note that the event is connected to. In this case, note 60 is
equal to the note middle C on the keyboard. The note input ranges from note 0 to note
127 and the events are not limited to just keyboard notes. Other events that are made on
the MIDI keyboard are also shown in this list. The velocity refers to the amount of force
with which a note is played.

You can simply terminate the program by pressing Ctrl + C.



2. Alternative Command: amidi
While aseqdump is very convenient to read, it may be quite difficult to parse the input.
Another command that you can use is amidi. Instead of outputting words, amidi outputs 3 hex
values.

(bbg)$ amidi -l

Similar to the ‘list’ commands for aseqdump above, this command shows the direction of the
controller, the device alias, and the device name.

To continuously dump the output, run the command below.

(bbg)$ amidi -d -p hw:1,0,0

● The first hex value indicates the event, whether it’s note on or note off. Hex value 90
means that the note is on and hex value 80 means that the note is off.

● The second hex value indicates the actual note that is played. For example, hex value
3C would be note 60.

● The third hex value refers to the velocity of the note.



3. Reading MIDI Keyboard Input Through Code

Our approach to reading MIDI keyboard input through code was by parsing the inputs from
amidi. Some of the code here was created by consulting with chatGPT.

This function is the main function that runs the amidi command. It captures the events and prints
the note played as a decimal integer.

void MidiReader_init(void) {

char* midiOutput;

printf("Press a button on the MIDI controller...\n");

const char *command = "amidi -d -p hw:1,0,0";

file = popen(command, "r");

if (!file) {

perror("popen");

exit(1);

}

while(1) {

// Execute amidi and get its output

midiOutput = executeAmidi(file);

// Parse MIDI output and extract note value

int played_key = parseMIDIOutput(midiOutput);

// Print the integer representation of note

printf("Note Played: %s\n", played_key);

// Wait for a moment before checking for MIDI events again

usleep(10000);

}

// Free allocated memory

free(midiOutput);

}



This function parses the midi output into an int representation.

// Consulted chatGPT for tokenizing output

static int parseMIDIOutput(char *midiOutput) {

// midiOutput should look like this initially: 90 3E 31

char *token;

int note = -1; // Default value if note is not found

// Gets the first part, which leads with 90

token = strtok(midiOutput, " ");

while(token != NULL) {

// 90 means key is being played

if (strcmp(token, "90") == 0) {

// Get the next part of the output (should be the note)

// Eg 3E

token = strtok(NULL, " ");

if (token != NULL) {

// Convert hexadecimal note value to decimal

note = (int) strtol(token, NULL, 16);

break;

}

}

// 80 means key is being released

else if (strcmp(token, "80") == 0) {

// Do something

break;

}

token = strtok(NULL, " ");

}

return note;

}



This function executes amidi as a pipe to continuously sample the midi output

// consulted chatGPT for set select functionalities

static char *executeAmidi(FILE *pipe) {

char *output = malloc(BUFFER_SIZE);

if (!output) {

perror("malloc");

exit(1);

}

output[0] = '\0'; // Initialize output with an empty string

char buffer[BUFFER_SIZE];

int i = 0;

while(i < BUFFER_SIZE - 1) {

fd_set set;

struct timeval timeout;

FD_ZERO(&set); // Clear the set

FD_SET(fileno(pipe), &set); // Add file descriptor to set

timeout.tv_sec = 0;

timeout.tv_usec = 10000; // 10 ms timeout between select

int result = select(fileno(pipe) + 1, &set, NULL, NULL,

&timeout);

if (result == -1) {

perror("select");

exit(1);

} else if (result == 0) {

break; // No data available, break the loop

} else {

// Data is available, read it

char c = fgetc(pipe);

buffer[i++] = c;

i++

if (c == '\n') {

buffer[i] = '\0';

strcat(output, buffer);

break; // Break loop when a newline character is read

}

}

}

return output;

}


