Gyroscope (BNOO085) UART-RVC Guide

by David Choi, HiFen Kong and Eric Kempton

Introduction

This guide shows how to wire the gyroscope to the Beaglebone for the UART-RVC
mode. It shows how to configure the Beaglebone to receive data from the
gyroscope and how to configure the connection. Furthermore, it shows how to read
and convert the data as needed.

Table of Contents

Wiring the Gyroscope to Beaglebone for UART-RVC
Configuring the Beaglebone

Configuring the Connection

Reading and Converting the Data

Troubleshooting

References

AR LI ol ol i
SN A WNN

Formatting:
Target (board) commands start with (bbg)$:
(bbg)$ echo "Hello!"

Wiring the Gyroscope to Beaglebone for UART-RVC

Place the gyroscope on the breadboard with the text facing the same direction as
the red Zen cape.

Wire the BNOO08S to
P9.03 (DC 3.3V).

Wire the BNOO85 P0 to
P9.03 (DC 3.3V). This is
to enable UART-RVC
mode.

Wire the BNOO085 GND
to P9.01 (GND).

- Wire the BNOO085 RX to
P9.26 (UART1 RXD).
P9.22 (UART2 RXD)
could also be used.
However, it shares a pin
with the buzzer so only
one can be controlled.

Source: https://cdn-learn.adafruit.com/downloads/pdf/adafruit-9-dof-orientation-imu-fusion-breakout-bno085.pdf

Configuring the Beaglebone

After wiring the gyroscope to the Beaglebone, connect to your virtual machine.
Once powered on, a green light should light up on the gyroscope. (If P9.22 is used,
the buzzer should buzz if connected properly). To configure the Beaglebone to
receive data from the gyroscope, run the following command:

(bbg)$ config-pin P9 26 uart
or if P9.22 was used:

https://cdn-learn.adafruit.com/downloads/pdf/adafruit-9-dof-orientation-imu-fusion-breakout-bno085.pdf

(bbg)$ config-pin P9 22 uart
To check if it is configured properly, print the data from the UART’s device node
with the following command:

(bbg)$ cat /dev/ttyS1
or if P9.22 was used:

(bbg)$ cat /dev/ttyS2
If values are printed to the screen, the gyroscope has been properly connected and
configured.

Configuring the Connection

To configure the connection between the gyroscope and Beaglebone we must first
open the serial port device and then configure the serial port. This can be done with
the following C code:

// C library headers
#include <stdio.h>
#include <string.h>

// Linux headers

#include <fcntl.h> // Contains file controls like O_RDWR

#include <errno.h> // Error integer and strerror() function
#include <termios.h> // Contains POSIX terminal control definitions
#include <unistd.h> // write(), read(), close()

#tdefine UART1 "/dev/ttyS1" // Or /dev/ttyS2 if P9.22 was used

int main (void) {
static int uart_fd;
struct termios tio;
uart_fd = open(UART1, O_RDWR);
if (uart_fd == -1)
{
perror("Error opening UART");
exit (EXIT_FAILURE);
}
tcgetattr(uart_fd, &tio);
cfsetispeed(&tio, B115200); // Set baud rate to 115200
cfsetospeed(&tio, B115200); // Set baud rate to 115200
tio.c_cflag |= (CLOCAL | CREAD);

tio.c_cflag |= CREAD | CLOCAL;

tio.c_1flag &= ~(ICANON | ECHO | ECHOE | ECHONL | ISIG);

tio.c_oflag &= ~OPOST;

tio.c_oflag &= ~ONLCR;

tio.c_iflag &= ~(IXON | IXOFF | IXANY);

tio.c_iflag &= ~(IGNBRK | BRKINT | PARMRK | ISTRIP | INLCR | IGNCR | ICRNL);
tio.c_cc[VTIME] = O;

tio.c_cc[VMIN] = UART_FD_NUM BYTES; // 19 bytes

tio.c_cflag &= ~CSIZE; // clear bit data
tio.c_cflag |= CS8; // 8-bit data
tio.c_cflag &= ~PARENB; // No parity
tio.c_cflag &= ~CSTOPB; // 1 stop bit

tcsetattr(uart_fd, TCSANOW, &tio);

close(uart_fd); // Closing the connection
return 0;

Source: https://blog.mbedded.ninja/programming/operating-systems/linux/linux-serial-ports-using-c-cpp/

Reading and Converting the Data

Once the serial port has been configured and opened, we can start to read and
convert the data. This can be done with the following example code:

while (1)
{
static double value;
char buffer[19]; // Since each packet is 19 bytes
memset (&buffer, '\0', sizeof(buffer));
ssize_t bytes_read = read(uart_fd, buffer, 19);
if (bytes_read > 9)

{
uint16_t roll_raw = (buffer[8] << 8) | buffer[7]; // Byte 8,9: Roll LSB,
MSB
intl6_t roll = (intl6_t)roll raw;
value = (double)roll / 100; // Converts int to float
}

usleep(10000); // 10 ms for 100Hz

https://blog.mbedded.ninja/programming/operating-systems/linux/linux-serial-ports-using-c-cpp/

This example code reads the data sent from the gyroscope at 100Hz (the rate
BNOO08S5 transmits data) and sets the variable value to the roll value converted into
degrees. Use the following packet info to get specific values needed:

Byte 1,2 : Header

Byte : Index

Byte 4,5 : Yaw LSB, MSB

Byte 6,7 : Pitch LSB, MSB

Byte 8,9 : Roll LSB, MSB

Byte 10,11: X-axis Accel LSB, MSB
Byte 12,13: Y-axis Accel LSB, MSB
Byte 14,15: Z-axis Accel LSB, MSB

1
3

Byte 16 : Motion Intent
Byte 17 : Motion Request
Byte 18 : Reserved
Byte 19 : Checksum

Source: https://www.ceva-ip.com/wp-content/uploads/2019/10/BNO080_085-Datasheet.pdf

Troubleshooting

o If the green light is not turning on: Make sure all the wires are in place.

e If nothing is being printed from /dev/ttyS1: Make sure all the wires are in
place and check that BNOO85 RX is connected to P9.26 (UART1 RXD).

Or

If nothing is being printed from /dev/ttyS2: Make sure all the wires are in
place, check that BNOO085 RX is connected to P9.22 (UART2 RXD), and
listen for the buzzer.

e If the data seems delayed: Make sure you are reading at 100Hz, any delay
in reading will make it seem like the data is delayed.

e If you want to read the data slower than 100Hz: Since the gyroscope
constantly sends data at 100Hz once the connection is open, the data will
start to stack up until it is read. Therefore, there might be a delay in
processing the data unless it is read at the same rate. To prevent this, we can
open the connection, read the data once, and then close the connection.
Completely, stopping the data from stacking up. This can be done with the
following code:

https://www.ceva-ip.com/wp-content/uploads/2019/10/BNO080_085-Datasheet.pdf

while (1)
{

// Open new connection

struct termios tio;

uart_fd = open(UART1, O_RDWR);

if (uart_fd == -1)

{
perror("Error opening UART");
exit(EXIT_FAILURE);

}

// Insert configuration here

memset (&buffer, '\0', sizeof(buffer));

ssize_t bytes_read = read(uart_fd, buffer, UART_FD_NUM_BYTES);

if (bytes_read > 9)

{
uint16_t roll_raw = (buffer[8] << 8) | buffer[7];
intl6_t roll = (intl6_t)roll raw;
value = (double)roll / INT_TO_FLOAT CONVERTER;

}

// Close current connection
close(uart_fd);
usleep(LOOP_DELAY_IN_US); // Can be any rate < 100Hz

This example code reads the gyroscope packet at a rate lower than 100Hz
and converts it into roll data.

References

1. https://cdn-learn.adafruit.com/downloads/pdf/adafruit-9-dof-orientation-imu-fusion
-breakout-bno085.pdf

2. https://www.ceva-ip.com/wp-content/uploads/2019/10/BNO080_085-Datasheet.pdf

3. https://blog.mbedded.ninja/programming/operating-systems/linux/linux-serial-ports
-using-c-cpp/

https://cdn-learn.adafruit.com/downloads/pdf/adafruit-9-dof-orientation-imu-fusion-breakout-bno085.pdf
https://cdn-learn.adafruit.com/downloads/pdf/adafruit-9-dof-orientation-imu-fusion-breakout-bno085.pdf
https://www.ceva-ip.com/wp-content/uploads/2019/10/BNO080_085-Datasheet.pdf
https://blog.mbedded.ninja/programming/operating-systems/linux/linux-serial-ports-using-c-cpp/
https://blog.mbedded.ninja/programming/operating-systems/linux/linux-serial-ports-using-c-cpp/

