
Guide to connecting USB device to BBG
By: Vy Bui, Hyeonyoung Park, Jooyoung Lee

1. Install libusb and enable permissions
This guide can be used to connect any USB device, but the driver code is specifically for an
XBox controller. Modify values and addresses accordingly.
In this step, we are going to install libusb on the host to compile the driver code for the controller
on the target. libusb is a C library that our driver code can use to provide access to USB devices
on the target. To cross-compile for the target, we need the armhf binary of libusb.

1. On the host, check if you already have the armhf architecture by running:
(host) $ dpkg --print-foreign-architectures

2. This should print “armhf”. If you do not see it, add the architecture as follows:
(host) $ sudo dpkg --add-architecture armhf
sudo apt-get update

3. Run (host) $ dpkg --print-foreign-architectures to check if the architecture has been
successfully added.

4. Now that you have armhf added, install libusb for target arm-linux-gnueabihf
(host) $ sudo apt-get install libusb-1.0-0-dev:armhf

5. Find the vendor id and product id of your usb device that you wish to connect. Connect
the device to your target. Then, you can use lsusb to list details about all the usb devices
that are currently connected to your machine. Install lsusb, and then run the command:
(bbg) $ sudo apt-get install usbutils
(bbg) $ sudo apt-get update
(bbg) $ lsusb
This should print out details about the usb device that is connected to your bbg. Look for
the vendor id and product id in this list of information.

6. On target, enable permissions for reading input from our USB device. Create a new udev
rule:
(bbg) $ sudo nano /etc/udev/rules.d/usb-permissions.rules
(you can name the .rules file whatever you want.)

7. Add this line:
(bbg) $ SUBSYSTEM=="usb", ATTRS{idVendor}=="045e", ATTRS{idProduct}=="028e",
MODE="0666"
0x045e and 0x028e are the vendor id and product id of an xbox controller. To add
permissions for your own usb device, you must find your own vendor id and product id in
step 5.

8. Reload udev rules for it to take effect: sudo udevadm control --reload-rules

You may need to unplug and replug your usb device for it to work.

Troubleshooting:
- If your linker cannot find libusb when you run make, make sure that your linker options

include “-lusb-1.0”. If that still doesn’t work, specify the location:
“-L/usr/lib/arm-linux-gnueabihf -lusb-1.0” in your makefile. The full command should be
something like:
$(CC_C) $(CFLAGS) $@.c $(DEPS) -o $(OUTDIR)/$@ -L/usr/lib/arm-linux-gnueabihf
-lusb-1.0

- Make sure you have done steps 1-4 correctly.
- If you get the error “libusb_claim_interface() failed: Resource busy” when running the

controller code on the target, there is likely an issue with the kernel driver. The module
code should have already detached the device from the kernel driver, but if it does not
work, you may need to do these steps (taken from this stackoverflow thread)
run:
(bbg) $ sudo nano /etc/modprobe.d/blacklist-libnfc.conf
Add the following to the configuration file:
blacklist pn533
blacklist nfc
save the file, then run:
(bbg) $ modprobe -r pn533 nfc

2. Driver code
The following code snippet is the basic driver code for a usb device. Again, the VENDOR_ID
and PRODUCT_ID constants are written for an XBox controller, as well as some of the specific
driver code. However, you could reuse them for a different usb device as well.

#include <stdio.h>

#include <stdlib.h>

#include <libusb-1.0/libusb.h>

// change IDs for your USB device

#define VENDOR_ID 0x045e

#define PRODUCT_ID 0x028e

#define INTERFACE_NUMBER 0

#define ENDPOINT 0x81

int main(int argc, char **argv)

{

libusb_context *ctx;

libusb_device_handle *dev_handle;

int error;

ssize_t cnt;

error = libusb_init(&ctx);

https://stackoverflow.com/questions/31131569/unable-to-claim-usb-interface-device-or-resource-busy

if (error != LIBUSB_SUCCESS) {

fprintf(stderr, "libusb_init() failed: %s\n", libusb_strerror(error));

return 1;

}

// Use libusb to open device

dev_handle = libusb_open_device_with_vid_pid(ctx, VENDOR_ID, PRODUCT_ID);

printf("%d, %d",VENDOR_ID,PRODUCT_ID);

if (dev_handle == NULL) {

fprintf(stderr, "libusb_open_device_with_vid_pid() failed: device not

found\n");

libusb_exit(ctx);

return 1;

}

if (dev_handle != NULL)

{

libusb_detach_kernel_driver(dev_handle, INTERFACE_NUMBER);

{

error = libusb_claim_interface(dev_handle, 0);

if (error != LIBUSB_SUCCESS) {

fprintf(stderr, "libusb_claim_interface() failed: %s\n",

libusb_strerror(error));

libusb_close(dev_handle);

libusb_exit(ctx);

return 1;

}

}

}

unsigned char data[20];

while (1) {

error = libusb_interrupt_transfer(dev_handle, ENDPOINT, data, sizeof(data),

&cnt, 0);

if (error == LIBUSB_ERROR_INTERRUPTED) {

break;

}

if (error != LIBUSB_SUCCESS) {

fprintf(stderr, "libusb_interrupt_transfer() failed: %s\n",

libusb_strerror(error));

break;

}

// Uncomment these lines to show the hexadecimal values registered by the

input of your usb device, which you can then use to read input.

// printf("Received input: ");

// for (int i = 0; i < cnt; i++) {

// printf("%x ", data[i]);

// }

// printf("\n");

// these specific values are for an XBox controller's right thumbstick.

if (data[8]==0xff && data [9]==0x7f){

printf("up\n");

}

if (data[7] == 0x80){

printf("left\n");

}

if (data[6]==0xff&&data[7]==0x7f){

printf("right\n");

}

if (data[9]==0x80){

printf("down\n");

}

}

// clean up any interface usage.

libusb_release_interface(dev_handle, 0);

libusb_close(dev_handle);

libusb_exit(ctx);

return 0;

}

Guide to connecting 16x32 LED panel to BBG
This guide focuses on running code to light up an LED panel. More detailed guides can be
found at the following links:
1.https://opencoursehub.cs.sfu.ca/bfraser/grav-cms/cmpt433/links/files/2015-student-howtos/Ad
afruit16x32LEDMatrixGuideForBBB.pdf
2.https://opencoursehub.cs.sfu.ca/bfraser/grav-cms/cmpt433/links/files/2018-student-howtos/Ad
afruit16x32LEDMatrixGuide.pdf

Our objective is to connect the LED panel's pins to the free BBG (Zen Cape) pins (P8 and P9)
using female-to-female jumper wires. Note that these wires are not provided in the BeagleBone
kit, so you may need to borrow or purchase them. For easier connection, tape the jumper wires
in bundles.

Figure 1 demonstrates an example of pin mapping. These decisions are mostly for the
developer's convenience, as the pins are adjacent to each other. We suggest using any of pins
45, 46, 44, and 43 for GND pins and pins 70-80 for the rest. It's easier to track the LED
pin-to-GPIO mapping after plugging them in, so do this first and then create a mapping table like
Figure 1. Update the GPIO #define variables in your LED display C module accordingly.

https://opencoursehub.cs.sfu.ca/bfraser/grav-cms/cmpt433/links/files/2015-student-howtos/Adafruit16x32LEDMatrixGuideForBBB.pdf
https://opencoursehub.cs.sfu.ca/bfraser/grav-cms/cmpt433/links/files/2015-student-howtos/Adafruit16x32LEDMatrixGuideForBBB.pdf
https://opencoursehub.cs.sfu.ca/bfraser/grav-cms/cmpt433/links/files/2018-student-howtos/Adafruit16x32LEDMatrixGuide.pdf
https://opencoursehub.cs.sfu.ca/bfraser/grav-cms/cmpt433/links/files/2018-student-howtos/Adafruit16x32LEDMatrixGuide.pdf

R1 [78] G1 [70]

B1 [8] GND [45]

R2 [71] G2 [72]

B2 [73] GND [46]

A [75] B [74]

C [77] D(GND) [43]

CLK [79] LAT [76]

OE [80] GND [44]

#define RED1_PIN 78 // UPPER

#define GREEN1_PIN 70

#define BLUE1_PIN 8

#define RED2_PIN 71 // LOWER

#define GREEN2_PIN 72

#define BLUE2_PIN 73

#define CLK_PIN 79

#define LATCH_PIN 76

#define OE_PIN 80

#define A_PIN 75

#define B_PIN 74

#define C_PIN 77

Figure 1: An example of pin mapping in chart and corresponding defined variables in C
(Referred Adafruit official guide and Raymond Chan’s guide)

Steps for connecting the wires:
1. Tape the LED panel’s 4 ground(GND) pins together and connect to BBG’s P9 pins

2. Tape the remaining 12 wires and connect to BBG's P8 pins.

3. Power your BBG with your host computer
4. Power your LED panel by connecting the power adapter

To test if you've connected the wires correctly, run test_LedMatrix.c, which was created by
previous students. Upon running the executable, you should see a V-shape with one red and

one green side without excessive flickering. If you see the wrong pattern or color, double-check
that the wires are plugged in tightly. You can reuse this as your LED matrix module and supply
your own 2D array.
GitHub - MontreaI/BeagleBone-Green-Adafruit-16x32-LED-Matrix-Sample-Code

Tips:
1. You control the colour with 3 bits(R, B, G). Thus, you can generate 8(2^3) different

colours(red, green, blue, pink, white, black, yellow, and light blue)
2. It is easier to manage the 16x32 2D array by dividing it into 4 segments. For example,

our team created a game map for Pacman by initializing a 2D array in this manner.

typedef enum

{

WALL,

PACMAN,

DOT,

POWER_DOT,

GHOST,

EMPTY,

OUT_OF_BOUND

} TileType;

typedef struct

{

TileType tileType;

Color color;

} Tile;

// Initializing map. ROW_SIZE = 16 COLUMN_SIZE = 32

Tile mapTopLeft[ROW_SIZE / 2][COLUMN_SIZE / 2] = {

{// trimmed},

{// trimmed},

{// trimmed},

{// trimmed},

{// trimmed},

{// trimmed},

{// trimmed},

https://github.com/MontreaI/BeagleBone-Green-Adafruit-16x32-LED-Matrix-Sample-Code

{// trimmed}};

Tile mapTopRight[ROW_SIZE / 2][COLUMN_SIZE / 2] = { // trimmed };

Tile mapBottomLeft[ROW_SIZE / 2][COLUMN_SIZE / 2] = { // trimmed };

Tile mapBottomRight[ROW_SIZE / 2][COLUMN_SIZE / 2] = { // trimmed };

// Merge gameMap parts

for(int i = 0;i<ROW_SIZE/2;i++){

for(int j=0;j<COLUMN_SIZE/2;j++){

gameMap[i][j]=mapTopLeft[i][j];

gameMap[i][j+COLUMN_SIZE/2]=mapTopRight[i][j];

gameMap[i+ROW_SIZE/2][j]=mapBottomLeft[i][j];

gameMap[i+ROW_SIZE/2][j+COLUMN_SIZE/2]=mapBottomRight[i][j];

}

Top Left
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Top Right
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Bottom Left
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Bottom Right
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

