
CMPT 433
Reading and Generating QR Code from NodeJS

through Webcam Stream
Last updated: Apr 11, 2023

Jason Chung, Martin Chudy, Josh Murphy, Caleb Bradley

Table of Contents
0. Prerequisite Setup... 2
1. Setting up a webcam on the BeagleBone Green.. 2
2. Using a C program to analyze/send frame data through UDP…………….. 2
3. Using Javascript and libs to analyze frame data on NodeJS server……… 3
4. Troubleshooting... 7
5. References.. 8

This document serves to show the user
1. Setting up webcam on the BeagleBone Green
2. Using a C program to send frame data through UDP
3. Using Javascript and libraries to analyze frame data on NodeJS server
4. Troubleshooting common problems

Guide has been tested on
● BeagleBone (Target): Debian 11.5
● PC OS (host): Debian 11.5

Hardware Used
●

● BeagleBone Green
● Webcam (any 720p or 1080p webcam should work). We used this one.

https://www.amazon.ca/dp/B07VL7BNLZ?psc=1&ref=ppx_yo2ov_dt_b_product_details

0. Prerequisite setup
● The guide requires internet access from the BeagleBone to function properly due

to the usage of UDP. We recommend setting up Ethernet over USB by following
Dr.Brian’s Networking Guide. Our group used the recommended ethernet over
USB option (section 2).

1. Setting up a webcam on the BeagleBone Green
1.1 Connect the webcam to the BeagleBone’s USB port

Run the command to verify USB connection:
(bbg)$ usb-devices

Look for an entry that resembles the camera. The maximum power should
also be visible. If using an USB splitter to power multiple USB devices,
keep this in mind.

2. Using a C program to analyze/send frame data through UDP
2.1 Download the capture.c code from the BoneCV library

● Modify the capture.c code following the steps from this guide (section 1.3).
● Additional modifications can be made based on your needs.
● Resolution and display size can be changed by adjusting the

fmt.fmt.pix.width and fmt.fmt.pix.height in force_format.
● OpenCV processing can also be done directly without the use of a

NodeJS server if desired. The frame data is sent to the Node server

https://opencoursehub.cs.sfu.ca/bfraser/grav-cms/cmpt433/guides/files/Networking.pdf
https://github.com/derekmolloy/boneCV/blob/master/capture.c
https://opencoursehub.cs.sfu.ca/bfraser/grav-cms/cmpt433/links/files/2022-student-howtos/StreamingWebcamFromBeagleBoneToNodeJSServer.pdf

through UDP with the function sendResponseT(). Below is a sample
lightweight code for detecting motion on the BBG using sum of absolute
difference before sending off the packet:

3. Using Javascript and libs to analyze frame data on NodeJS server
3.1 Setting up NodeJS server

● Follow section 2 of this guide (skip the 2.9 portion)
● Run the commands:

(bbg)$./capture.c
(host)$ node index.js
Make sure the stream is visible on the browser.

https://opencoursehub.cs.sfu.ca/bfraser/grav-cms/cmpt433/links/files/2022-student-howtos/StreamingWebcamFromBeagleBoneToNodeJSServer.pdf

3.2 Installing required libraries for QR
● Install JIMP: this will be used to read .jpg files and the received frame data

(host)$ npm install qrcode-reader jimp
● Install the jsQR library: this is used for scanning QR codes. The other QR

library does not work for scanning.
(host)$ npm install jsqr --save

● Install QRcode
(host)$ npm install qrcode

3.3 Import the libraries to our javascript file
Inside index.js, add the following lines to the start of the file:

const jsQR = require("jsqr");
const qrCodeReader = require('qrcode-reader');
const qrGenerator = require('qrcode');
const Jimp = require("jimp");
const fs = require("fs");

3.4 QR Code Scanning
The function ffmpeg.stdout.on('data', function (data) is in charge of dealing with
the frame data received from the C application running on the BBG. You may not
want to call the QR scan function too often, otherwise the stream can get choppy
and you may run into a malformed image data error. To add a delay, wrap the
function with the following:

if((Date.now()/1000) - last_time > 1){
last_time = (Date.now())/1000;
//rest of code

}

3.4.1 Convert frame data to image

● We first save the frame data as a .jpg image using fs.
fs.writeFileSync("jee.jpg", data);

● Convert it to .png format so that it can be processed later on.

Jimp.read("jee.jpg", function (err, image) {
//will print the error
if (err) {
console.log(err)
}
//Convert the image into PNG format and save

https://github.com/cozmo/jsQR

else {
image.write("jee.png")
}

})
// Read the image file
fs.readFile('jee.png', (err, data) => {
if (err){
console.log(err);
return;
}

Sample Image saved to jee.png

3.4.2 Scan the image for possible QR code

● Read in the image using JIMP

// Create a Jimp image object from the data

https://i.imgur.com/qyEnqrs.png

Jimp.read(data, (err, image) => {
if (err){

console.log(err);
return;

}
// Get the image as a Uint8ClampedArray
const imageData = image.bitmap.data;

● Check for QR code:

// Do something with the image data(scan)
const code = jsQR(imageData, 800, 600);

If code returns true, that means a QR code has been successfully
scanned. Print it out using console.log("Found QR code", code);
to view the QR code info. code.data contains the text value stored within a
QR code. To validate using QR code, do not compare the scanned QR
code image to an existing one. Save the text value of your existing QR in
a text file and compare it to code.data.

3.4.3 Generating a new QR code
● Save the text value you want to encode

let newcode = “new text value”
● Use qrcode lib to generate a QR code and save it as png

qrGenerator.toFile('qrcode/qr.png', newcode, {
errorCorrectionLevel: 'H'
}, function(err) {
if (err) throw err;
});

● Optional: save the new text data to a text file

4. Troubleshooting
4.1 Receiving the error while scanning QR code: couldn't find enough
finder patterns: 2 patterns found

The finder patterns are the black squares within a QR code. The qrcode library
runs into this issue frequently. The fixes listed here may or may not fix the
problem. We recommend using the jsQR library instead as mentioned in the
guide.

4.2 Error: Malformed data passed to binarizer.
The output images may be malformed if for every frame received, the image gets
overwritten. This is why we wrapped the entire function to only run if at least 1
second has passed since the last execution. If you are still encountering this
error frequently, increase the timer. Additionally, you may wish to use
async-mutex but we will not get into that.

4.3 Choppy frame rate
Reduce the size of each frame and refresh the browser.

https://github.com/dwa012/html5-qrcode/issues/52

5. References

[1] Webcam stream from BeagleBone to Node
https://opencoursehub.cs.sfu.ca/bfraser/grav-cms/cmpt433/links/files/2022-student-howt
os/StreamingWebcamFromBeagleBoneToNodeJSServer.pdf

[2] Setting up internet on the BeagleBone
https://opencoursehub.cs.sfu.ca/bfraser/grav-cms/cmpt433/guides/files/Networking.pdf

[3] QR code generation
https://blog.logrocket.com/create-read-qr-codes-node-js/

[4] jsQR library
https://github.com/cozmo/jsQR

[5] BoneCV library
https://github.com/derekmolloy/boneCV

https://opencoursehub.cs.sfu.ca/bfraser/grav-cms/cmpt433/links/files/2022-student-howtos/StreamingWebcamFromBeagleBoneToNodeJSServer.pdf
https://opencoursehub.cs.sfu.ca/bfraser/grav-cms/cmpt433/links/files/2022-student-howtos/StreamingWebcamFromBeagleBoneToNodeJSServer.pdf
https://opencoursehub.cs.sfu.ca/bfraser/grav-cms/cmpt433/guides/files/Networking.pdf
https://blog.logrocket.com/create-read-qr-codes-node-js/
https://github.com/cozmo/jsQR
https://github.com/derekmolloy/boneCV

