Communication between webserver and embedded server

Team: Launchpad
Spring 2023
CMPT 433
Member:Yiwen Wang, Connor Read, Jason Nguyen, Serena Bal-Pietrantoni

Basic logic:
The configuration of the launchpad is sent from Reactjs app to Nodejs webserver in the form of
HTTP request. Each HTTP request will be saved into a file on disk of BeagleBone. The file
representing a request will be picked up by the C++ embedded server and processed. After the
request is processed, the corresponding file will be deleted by the C++ server. This design is
essentially a local version of cloud message queue based system.
Advantage:
e The Nodejs server (i.e., the requestor) and C++ server (i.e., the processor) have no
dependency on each other as they are not even aware or each other.
e Each request that cannot be processed for some reason can be retried by the C++ server
itself without needing the Nodejs sever to resend the request.
e Only requires one thread for C++ server to handle all the requests.
Disadvantage:
e None. Although saving and reading file is slower compared to UDP based socket
transmission, the slowness can be omitted because both Nodejs and C++ servers are
running on the same machine.

Here are some examples on how to communicate with the C++ server by sending HTTP requests
to the Nodejs server via Postman (2 post requests and 2 get requests):

POST W http:f192.168.7.2:12345/volume m

Params Authorization Headers (8) Body Pre-request Script Tests Settings Cookles

none form-data ®-www-form-urlencoded @ raw binary GraphQL JSON - Beautify

1
2 i
3 "LaunchpadVolume":"increase

4 1

POST ~ http:/f192.168.7.2:12345/button m
Params Authorization — Headers (8) Bodye Pre-request Script Tests Settings Cookles
none form-data x-www-form-urlencoded @ raw binary Graph@QL JSON -~ Beautify

1
2
3 "LaunchpadButton":5

43

GET

LY

http:/[192.168.7.2:12345/volume

Params Authorization Headers (6) Body

Pre-request Script

nane form-data x-www-form-urlencoded @ raw binary

1

Body Cookies Headers (8) Test Results

Pretty Raw Preview Visualize JSON v =

1 i
2 "Volume":
3K

nge

GET

(v

http://192.168.7.2:12345/tempo

Params Authorization Headers (6) Body Pre-request Script

Query Params
Key Value

Body Cookies

Headers (8) Test Results

Pretty Raw Praview Visualize JSON

v

"Tempo": "128"

W oM
e

Trouble-shooting:

Cookies

Beautify

Save Response

mQ

Cookles

Tests Settings
GraphQL JSON -~
@ 2000k BOms 2808
Tests Settings
Description waa
@ 2000k 378ms 2818

Uing ‘console.log()’ to print out the received message in the terminal.

The output looks like this:

debian@BeagleBone: /mnt/remote/myApps/ApiServer$ node app.js

App listening on port 12345!
request body: { LaunchpadButton: 5 }
button: 5

Bulk Edit

mQ

Save Response ~

Step-by-step code guide:

In Nodejs (post request):

The code in the black box is receiving requests from the Reactjs app. It sends an HTTP 400 Bad
Request response with an error message.

The red box generates a random file name and a file path is constructed and the message is
written into the file.

If the file write is successful, an HTTP 200 OK response is sent.

B volumejs [} 141k8 l

const express = require('express');

const crypto = require('crypto');
const router = express.Router();

const fs = require('fs');

fff:auter.post('/', (request, response) => { ﬁh\\

console.log("request body:", request.body);

const volumeStr = request.body['LaunchpadVolume'];

if (!volumeStr) {

response.status(400).json({ "Error": “Invalid input "${volumeStr}"~ });
return;

¥

console.log("volume: " + volumeStr);

x\\h let volumeSetting = "Volume\n" + volumeStr; J,J;

let wuid = crypto.randomUUID();

let filePath = "/tmp/changeFeed/" + uuid.toString() + ".txt";
fs.writeFile(filePath, volumeSetting, err => {
if (err) {

console.error(err);

let errJson = {

"Error": “Unable to save volume due to error ${err}
I
response.status(err.status).json(errlscon);

1
I

response.sendStatus(288);

1

In Nodejs (get request):

In black box:

Read the contents of a file located at a certain location.

If there is an error reading the file, an error response is sent with a JSON object containing the
error message.

In red box:

A JSON object is created containing the data read from the file.

An HTTP 200 OK response is sent with the JSON object.

router.get('/', (request, response) => {
fs.readFile("/tmp/launchpad volume/value.txt", 'utf8', function (err, data) fﬁhx
if (err) {

console._error(err);

let errlson = {
"Error": “Unable to save volume due to error ${err}”
s
response.status(err.status).json(errlson);
¥
console.log(data);

let volumelson = {
"Volume": data
I
response.status(20@).json(volumelson);
I
1)

C++ code:
The function compares the last modified timestamps of the two files.

bool compareFilesByTimestamp(const std::string &filePathl, const std::string &filePath2)

{
return std::filesystem::last_write_time(filePathl) < std::filesystem::last_write_time(filePath2);

The sorting is done based on the last modified timestamps of the files using the
compareFilesByTimestamp function

std::vector<std::string® sortFilesByTimestamp(const std::vector<std::string> &filelist)

{
std::vector<std::string> sortedFilelist = filelist;
std::sort(sortedFilelist.begin(), sortedFilelist.end(), compareFilesByTimestamp);
return sortedFilelist;

¥

The function returns a sorted vector of file paths inside the directory in ascending order of their
last modified timestamps.

std:ivector<std::string> getChangesInAscOrder(DIR *dir, const char* dirPath)
{

std::vector<std::string> filelist;

if (dir == nullptr)
{
std::cout << "Failed to open directory\n";

return filelist;

}

dirent¥* entry;
while ((entry = readdir(dir)) != nullptr)

! if (entry->d _type == DT_REG && entry->d_name[8] != '.")
{
filelist.push_back(std::string(dirPath) + "/" + entry->d_name);
}
¥

return sortFilesByTimestamp(filelist);

Finally, we can work with the JSON object which is stored in the file as the following code.

auto lines = readlLinesFromFile(filePath);
if (lines.empty())
{

std::cout<< "lLine is enp

return;

auto cmd = lines[@];

auto cmd_value = lines[1];

if (cmd == "Volume")

{
if (cmd_value == "increase"
{

volume_increase_command();

