
Communication between webserver and embedded server

Team: Launchpad
Spring 2023
CMPT 433

Member:Yiwen Wang, Connor Read, Jason Nguyen, Serena Bal-Pietrantoni

Basic logic:
The configuration of the launchpad is sent from Reactjs app to Nodejs webserver in the form of
HTTP request. Each HTTP request will be saved into a file on disk of BeagleBone. The file
representing a request will be picked up by the C++ embedded server and processed. After the
request is processed, the corresponding file will be deleted by the C++ server. This design is
essentially a local version of cloud message queue based system.
Advantage:

● The Nodejs server (i.e., the requestor) and C++ server (i.e., the processor) have no
dependency on each other as they are not even aware or each other.

● Each request that cannot be processed for some reason can be retried by the C++ server
itself without needing the Nodejs sever to resend the request.

● Only requires one thread for C++ server to handle all the requests.
Disadvantage:

● None. Although saving and reading file is slower compared to UDP based socket
transmission, the slowness can be omitted because both Nodejs and C++ servers are
running on the same machine.

Here are some examples on how to communicate with the C++ server by sending HTTP requests
to the Nodejs server via Postman (2 post requests and 2 get requests):



Trouble-shooting:
Uing ‘console.log()’ to print out the received message in the terminal.
The output looks like this:



Step-by-step code guide:
In Nodejs (post request):
The code in the black box is receiving requests from the Reactjs app. It sends an HTTP 400 Bad
Request response with an error message.
The red box generates a random file name and a file path is constructed and the message is
written into the file.
If the file write is successful, an HTTP 200 OK response is sent.

In Nodejs (get request):
In black box:
Read the contents of a file located at a certain location.
If there is an error reading the file, an error response is sent with a JSON object containing the
error message.
In red box:
A JSON object is created containing the data read from the file.
An HTTP 200 OK response is sent with the JSON object.



C++ code:
The function compares the last modified timestamps of the two files.

The sorting is done based on the last modified timestamps of the files using the
compareFilesByTimestamp function

The function returns a sorted vector of file paths inside the directory in ascending order of their
last modified timestamps.



Finally, we can work with the JSON object which is stored in the file as the following code.


