Grove GPS (SIM28) UART Guide for
BeagleBone Green

Guide is tested on:

BeagleBone Green: Debian 11.5

Host OS: Debian 11.6

Grove GPS: SIM28 Version
(https://www.seeedstudio.com/Grove-GPS-Module.html)

This document guides the user through:
1. Introducing Grove connectors and the UART communication protocol
2. Initializing the Grove UART port on the BeagleBone Green
3. Interfacing the Grove GPS through Linux’s device node to get raw NMEA data
4. Using C code to interface with the Grove GPS module

1. Grove Connectors and UART Protocol

Grove connectors by Seeed Studio (the same company behind the BeagleBone
devices) are a connector prototyping system which works as a plug-and-play solution to
connect various electronics through a multitude of communication protocols. Grove
connectors support 4 kinds of interfaces: Digital, Analog, UART, and 12C. The
BeagleBone Green Includes 2 Grove connectors (12C and UART). For the purposes of
the Grove GPS module, we will be using the UART interface.

UART (Universal Asynchronous Receiver/Transmitter) is a simple serial communication
protocol to exchange serial data between devices. UART communication consists of a
Receive (Rx) channel and a Transmit (Tx) channel. Because UART communication has
separate channels for receiving and transmitting, UART allows for full duplex
communication (both parties can transmit data at the same time). UART also allows for
flow control in the form of RTS (Request to Send) and CTS (Clear to Send) channels
but both these channels are not supported on the Grove UART interfaces.

https://www.seeedstudio.com/Grove-GPS-Module.html

2. Enabling Grove UART port on the BeagleBone
Green

The BeagleBone Green’s UART Grove Interface is connected to UART2 which is
interfaced by the P9_21 (UART2_TXD) and P9_22" (UART2_RXD) pins on the board.
In order to enable UART2 on the board, the device tree has to be loaded so Linux
knows how to handle the UART connection.

2.1 Loading the UARTZ2 device tree

1. Ensure the UART2 device tree exists on the device
a. Runthe command:
(bbg)s 1s -1 /lib/firmware/*UART*
b. Ensure that the device tree blob /1ib/firmware/BB-UART2-00A0.dtbois
found
2. Load the device tree in /boot /uEnv. txt
a. Back up the uEnv file before proceeding
(bbg)$ sudo cp /boot/uEnv.txt /boot/uEnvBackup.txt
b. Edit /boot/uEnv.txt
(bbg) $ sudo nano /boot/uEnv.txt
c. Find the section titled:
###Additional custom capes

d. Load the .dtbo file onto any of the overlays
###Additional custom capes
uboot overlay addr4=/lib/firmware/BB-UART2-00A0.dtbo

e. Reboot the board

' The P9_22 pin is also used by the Zen Cape’s Buzzer as a PWM pin interface, so plugging in the Grove
GPS module to the BeagleBone Green while the Zen Cape is connected will result in the buzzer beeping.
To turn off the buzzer, you can remove the jumper located on the side of the buzzer on the Zen Cape.

3. Connecting the Grove GPS Module to the
BeagleBone Green

Once the device tree is loaded, Linux should know how to operate the UART2 port.
Now, we can connect the GPS module to receive GPS data. GPS data is transmitted in
the form of NMEA (National Marine Electronics Association) sentences. These
sentences include important information, such as how many satellites are in view and
latitude and longitude of the device.

3.1 Connect and interface with the GPS module

1.

2.

Connect the Grove GPS Module to the Grove UART connector on the BeagleBone
Green using a Grove Connector Cable. An example is shown below.

p—

%
W

a. Note: Ensure that the device is connected on the UART Grove port, not the 12C
Grove port.

i. An easy way to check if the module is connected on the correct port is to
listen to the Zen Cape’s buzzer. Because UART2 and the PWM interface
the buzzer uses is controlled through the same pin, the buzzer should ring
if the module is connected to the UART Grove port

Print the output of the GPS receiver through the Linux device node

a. Because UART is a serial communication protocol, Linux can communicate with
the GPS receiver through Linux’s serial device node.

b. UARTZ2’s device node is found in /dev/ttyS2
To see the GPS module’s output, run the command:
(bbg) $ cat /dev/ttyS2
$GPGGA, 010755.800,,,,,0,0,,,M,,M,,*46
SGPGSA,A, L, ,,vsrrrrirris *1E
SGPGSV,1,1,00*79
$GPRMC, 010755.800,V,,,,,0.00,0.00,060180,,,N*4C

d. The output of the GPS module is formatted in NMEA sentences. For more details
about the NMEA sentence format and how to parse them, refer to the SIM28
NMEA Message Specification?

4. Interface with the UART port through C code

Interfacing with the UART port with C code can be done using the <termios.h>

library, which allows control of asynchronous communication ports. Because the UART
communication protocol is an asynchronous serial protocol, we can interface with the
UART port through a serial connection.

4.1 Configure a serial connection

The function below shows an example on how to configure the serial port for the Grove
GPS module. The function is adapted from Geoffrey Hunter's article®, where detailed
explanations for each configuration can be found:

<termios.h>

int serialPort;

int configureSerial() {

struct termios tty;

(tcgetattr(serialPort, &tty) 0) {
printf("Error %i from tcgetattr: %s\n", errno, strerror(errno));

tty.c_cflag PARENB;
tty.c_cflag CSTOPB;

2 5IM28/68R/68V NMEA Messages Specification
3T Serial P Using C/C++ | mi —

https://blog.mbedded.ninja/programming/operating-systems/linux/linux-serial-ports-using-c-cpp/
https://simcom.ee/documents/SIM28/SIM28%40SIM68R%40SIM68V_NMEA%20Messages%20Specification_V1.00.pdf

.c_cflag CSIZE;
.c_cflag Cs8;
.c_cflag CREAD | CLOCAL;

.c_1flag ICANON;

.c_1lflag ECHO;

.c_1flag ECHOE;

.c_1flag ECHONL ;

.c_1flag ISIG;

.c_iflag (IXON | IXOFF | IXANY);
.c_iflag (IGNBRK|BRKINT |PARMRK |ISTRIP |[INLCR|IGNCR|ICRNL);
.c_oflag OPOST;

.c_oflag ONLCR;

.C_CC[VTIME] = TIME_OUT VALUE_DS;
.C_cc[VMIN] 9;

cfsetispeed(&tty, B9600);
cfsetospeed(&tty, B9600);

(tcsetattr(serialPort, TCSANOW, &tty) 0) {
printf("Error %i from tcsetattr: %s\n", errno, strerror(errno));
1;

4.2 Reading from GPS module using serial connection

After configuring serial connection to interface with the module, the values of the
module can be read using a read () function to read from the serial port file descriptor.

For example:
numBytes = read(serialPort, &buf, (buf));

