How to Detect Motion using only a Webcam connected
to a BeagleBone



Introduction:

In this guide, you will learn how to detect motion with a webcam using only its image stream.
The webcam does this by detecting if the image it is currently capturing differs from a previous
image by a certain threshold and if so will signal that there has been motion. Completing this
module can aid in implementing other features that may also require motion detection.

NOTE: All of the following code will be written in C.

Pre-requisites:

1.
2.

o

Have a webcam with a proper connection to the BeagleBone
Have a working program that gets MJPEG frames from the webcam.
a. There are many student guides from previous years that will guide you to do this.
See the troubleshooting section for links.
b. There is also this example file you can refer to help you. This guide will require
data received in the params just like the process_image method of that example.
Have a method ready to process the MJUPEG frames, should have an unsigned char
pointer to the frame data, and an int hold its size.
Have a global variable of the type uint8_t *, initialized to NULL, outside the scope of
your process_image method. In this guide, we will refer to that variable as
prevFrameData.
Have a global variable or definition called THRESHOLD storing the value 30.
MUST BUILD THIS CODE ON TARGET

Section 1: Install Dependencies:

1.

On your BeagleBone run the following command:

sudo apt-get install libavcodec-dev libavformat-dev libswscale-dev libavutil-dev



https://www.kernel.org/doc/html/v4.11/media/uapi/v4l/capture.c.html

Section 2: Writing the code that needs to be run for each frame
that is picked up by the webcam:

1. Initialize the Codec and CodecContex:

AVCodec *codec = avcodec_find_decoder(AV_CODEC_ID MJPEG);

AVCodecContext *codecContext = avcodec_alloc_context3(codec);

2. Open the Codec:

if (avcodec_open2(codecContext, codec, NULL) < @)

{

printf("avcodec_open2 error\n");
exit(1);

3. Create a packet from the mjpeg data you have so it can then be converted to RGB
values:

AVPacket packet;

av_init_packet(&packet);

packet.data = malloc(sizeof(unsigned char) * size);
memcpy (packet.data, p, size);

packet.size = size;

4. Send the pack in the codec we created earlier:

// Send packet to avcodec to it can decode with the provided codec
if (avcodec_send_packet(codecContext, &packet) < 9)

{

// Handle error

printf("send packet error\n");
exit(1);




5. Allocate a Frame variable so we can receive the decoded frame:

// Alloc frame
AVFrame *frame = av_frame_alloc();

// Receive the frame from avocdec and now we have the decoded data!
if (avcodec_receive_frame(codecContext, frame) < 0)
{

printf("receive frame error\n");

exit(1);

6. Extract the data that is needed from frame:

uint8 t *frameData = frame->data[@];
int frameDataSize = frame->linesize[@] * frame->height;

7. Check if prevFrameData has data, if not, give it data. Else proceed to step 8.
(not sure what prevFrameData is? Read Pre-regs of this document)

if (prevFrameData == NULL)
{

prevFrameData = malloc(sizeof(uint8_t) * frameDataSize);

}

else {

8. Now we begin detecting motion. First, let's count the number of pixels that differ from the
previous frame (prevFrameData) and the current frame (frameData) that differ more than
THRESHOLD pixel points:

(Note: this code would be part of the else block of the if statement in step 7.)

int differentPixels = 0;

for (int i = 0; i < frameDataSize; ++i)

{
uint8_t prevPixel = prevFrameData[i];
uint8 t curPixel = frameData[i];

int diff = (int)((int)curPixel) - ((int)prevPixel);
diff = diff < ? diff * : diff;




if (diff > THRESHOLD)
{

differentPixels++;

}

9. Check if a significant portion of the image was different. In this guide we will consider
motion being detected if more than 5% of the pixel were different.

if (differentPixels >= frameDataSize *

10. Lastly, copy the current frame (frameData) into the previous frame (prevFrameData) so
when the next frame is processed, we can refer to the current frame as the previous
frame.

memcpy (prevFrameData, frameData, frameDataSize)

Troubleshooting:

1. Ensure that you are installing all the necessary libraries and building the project in the
target environment, not the host.

2. Make sure that all the required libraries, such as libavcodec-dev, libavformat-dev,
libswscale-dev, and libavutil-dev, are installed correctly on your BeagleBone. You can
check the installation status of these libraries by using the 'dpkg' command.

(target)$ dpkg -1 | grep <library_name>



3. Before running the application, make sure that the webcam is correctly connected to the
BeagleBone board. You can use the ‘Isusb’ command in the terminal to confirm that the
board recognizes the webcam.

(target)$ 1lsusb

4. The guide assumes that you have already obtained the video frames from the V4L2 API
on the BeagleBone board. If you require assistance with capturing video from V4L2, you
can refer to the student's previous how-to guide on capturing videos from a webcam for
instructions. Here are a few helpful examples:

https://opencoursehub.cs.sfu.ca/bfraser/grav-cms/cmpt433/links/files/2022-student-howt
os/DetectMotionUsingUSBWebcamAndOpenCV.pdf

https://opencoursehub.cs.sfu.ca/bfraser/grav-cms/cmpt433/links/files/2015-student-howt
os/Recording\WebcamVideos.pdf

References:

1. http://ffmpeqg.org/documentation.html
2. https://ffmpeg.org/doxygen/trunk/index.html



https://opencoursehub.cs.sfu.ca/bfraser/grav-cms/cmpt433/links/files/2022-student-howtos/DetectMotionUsingUSBWebcamAndOpenCV.pdf
https://opencoursehub.cs.sfu.ca/bfraser/grav-cms/cmpt433/links/files/2022-student-howtos/DetectMotionUsingUSBWebcamAndOpenCV.pdf
https://opencoursehub.cs.sfu.ca/bfraser/grav-cms/cmpt433/links/files/2015-student-howtos/RecordingWebcamVideos.pdf
https://opencoursehub.cs.sfu.ca/bfraser/grav-cms/cmpt433/links/files/2015-student-howtos/RecordingWebcamVideos.pdf
http://ffmpeg.org/documentation.html
https://ffmpeg.org/doxygen/trunk/index.html

