
Cross-compiling PJSIP for the Beaglebone Green
by:
Sanseerat Virk
Ryan Tio
Mikhail Egorov
Nhi Mai-Do

Last update: Apr 12, 2023

This guide walks the user through
1. Cross-compiling the PJSIP library
2. Testing the compilation
3. Building a sample application

This guide will focus on cross-compiling PJSIP, a very powerful open source multimedia
communication library written in C. This library has many uses, but for the purposes of this
guide, the focus will be implementing a sip peer to peer connection between the host and target.
To make sure everything compiled successfully, a sample makefile will be provided which
allows you to use the PJSIP API in your C program.

Table of Contents

0. Pre-requisites..3
1. Compile the PJSIP library..4

1.1 Obtain the PJSIP library...4
1.2 Link the asound library.. 4
1.3 Run the configuration script...4
1.4 Run the makefile.. 5
1.5 Copy the executable to the beaglebone..7

2. Running the sample app...8
2.1 Running the app... 8
2.2 Interfacing with the app... 9

3. Sample makefile and C program using PJSIP lib.. 10

1

0. Pre-requisites
Software requirements
This guide was written for PJSIP version 2.13
The host machine runs Debian 11 inside a Vmware workstation 17 configured using Brian’s
guide

Prerequisite knowledge
This guide is assuming that you have followed Dr Brian’s initial guide on building
cross-compiled applications.

It is also assuming you are referencing the following resources
https://docs.pjsip.org/en/latest/overview/features.html
https://docs.pjsip.org/en/latest/get-started/posix/build_instructions.html

The following is another guide using a different approach, also useful for understanding.
The second half explains setup for host to target peer to peer.
https://www.hackster.io/leograba/setting-a-voip-sip-user-agent-with-embedded-linux-827a7

Dr Brian Fraser will be referred to as Brian in this guide.

Formatting
1. Commands to be run on the host machine are prefixed with (host)$
2. Commands to be run on the beaglebone are prefixed with (bbg)$

2

https://docs.pjsip.org/en/latest/overview/features.html
https://docs.pjsip.org/en/latest/get-started/posix/build_instructions.html
https://www.hackster.io/leograba/setting-a-voip-sip-user-agent-with-embedded-linux-827a70

1. Compile the PJSIP library

1.1 Obtain the PJSIP library

Option 1: Clone the latest release from their github:
https://github.com/pjsip/pjproject

Option 2: Download the tar or the zip version from their website:
https://www.pjsip.org/download.htm

At the time of writing this guide, the zip file should yield a folder named
pjproject-2.13.Place this in your home directory.

1.2 Link the asound library
Travel inside this directory.
(host)$ cd pjproject-2.13

Create a user.mak file in the pjproject-2.13 directory
(host)$ sudo nano user.mak

In addition to the tools installed by following Brian’s audio guide, you need the path to the
library libasound.so. This is compiled on the target and placed in the public nfs directory of
the folder shared between the target and host.

Inside the user.mak file you created, place the following content:

3

https://github.com/pjsip/pjproject
https://www.pjsip.org/download.htm

1.3 Run the configuration script
Run the following command:

(host)$./configure --host=arm-linux-gnueabihf --disable-libwebrtc

Figure 1: Expected output

The ./configure parameters will need to be adjusted based on your needs. The --host
parameter specifies the cross compiler being used for the Beaglebone. This is a prerequisite that
needs to be met through Brian's guide. We found that we needed to disable the libwebrtc
in order for cross-compilation to work.

1.4 Run the makefile
Now run:

(host)$ make dep

Figure 2: Expected output

4

(host)$ make

Figure 3: Expected output

You should now have the executable of a sample app made to run on your beagle bone which
composes most of the feature offered pjsip library

Troubleshooting:
At all these stages you will encounter many errors. These are mainly due the scripts trying to find
the resources on your host in order to compile the libraries. In some cases, there may be no
support for the entire set of features provided by the library which are supported.

In order to work around these errors you have two options:

1. Disable the features that require the missing resources

(host)$./configure --help

This bring up all options that can be passed to this configure file

5

Figure 4: Expected output

2. Install the missing resources

1.5 Copy the executable to the beaglebone

Move inside the folder containing the sample app binaries:

(host)$ cd /pjproject-2.13/pjsip-apps/bin

Figure 5: Folder contents

Copy the executable pjsua-arm-unknown-linux-gnueabihf to the nfs folder myApps:

(host)$ cp pjsua-arm-unknown-linux-gnueabihf ~/cmpt433/public/myApps

6

2. Running the sample app

2.1 Running the app

SSH into your beaglebone and run the app:

(host)$ ssh debian@192.168.7.2

(bbg)$ cd /mnt/remote/myApps

(bbg)$./pjsua-arm-unknown-linux-gnueabihf

Figure 6: Expected output when running the app

7

If you have reached this step you have successfully compiled the libraries. Now you can use
PJSIP in your own C program for the features you require.

You can learn how to utilize the library by playing around with this sample app and analyzing the
source code behind this app. It is open source, and can be found in the pjproject directory pj-apps
and on github.

2.2 Interfacing with the app

To interface with this app, you can download a softphone on your host that can call the ip
address registered by this app. We recommend using the Linphone app: https://www.linphone.org
You will need to figure out the hardware you are utilizing for audio input and output and pass in
appropriate parameters:
(bbg)$./pjsua-arm-unknown-linux-gnueabihf --help

3. Sample makefile and C program using PJSIP lib

For this makefile to work, go to the build.mak file in the pjproject-2.13 directory and add
the path to -lasound

Without this you will encounter this error:

/usr/lib/gcc-cross/arm-linux-gnueabihf/10/../../../../arm-linux-gnueabihf/bin/ld: cannot find
-lasound

8

https://www.linphone.org

Sample makefile:

PJDIR = $(HOME)/pjsua/pjproject-2.13
include $(PJDIR)/build.mak
OUTDIR = $(HOME)/cmpt433/public/myApps
OUTFILE = $(OUTDIR)/hello_pjsua

$(OUTFILE): my_app.c
$(PJ_CC) -o $(OUTFILE) $< $(PJ_CFLAGS) $(PJ_LDFLAGS) $(PJ_LDLIBS)

all: $(OUTFILE)

clean:
rm -f $(OUTFILE)

Sample C program:

#include <pjsua-lib/pjsua.h>
#include <pj/log.h>
#include <stdio.h>

#include <pjmedia/sound.h>

int main()
{

pj_status_t status;

status = pjsua_create();
PJ_LOG(3, ("myapp.c", "Hello PJSIP! Bye PJSIP."));

pjsua_destroy();
return 0;

}

9

Compile and run the program:
(host)$ make

(bbg)$./hello_pjsua

Sample run demonstrating that you can now use pjsua api in your program:

debian@ssv3-beagle:/mnt/remote/myApps$./hello_pjsua
07:12:29.245 os_core_unix.c !pjlib 2.13 for POSIX initialized
07:12:29.303 sip_endpoint.c .Creating endpoint instance...
07:12:29.370 pjlib .select() I/O Queue created (0x247d2d8)
07:12:29.370 sip_endpoint.c .Module "mod-msg-print" registered
07:12:29.371 sip_transport. .Transport manager created.
07:12:29.371 pjsua_core.c .PJSUA state changed: NULL --> CREATED
07:12:29.371 myapp.c Hello PJSIP! Bye PJSIP.
07:12:29.371 pjsua_core.c Shutting down, flags=0...
07:12:29.371 pjsua_core.c PJSUA state changed: CREATED --> CLOSING
07:12:29.371 pjsua_call.c .Hangup all calls..
07:12:29.371 pjsua_media.c .Call 0: deinitializing media..
07:12:29.371 pjsua_media.c .Call 1: deinitializing media..
07:12:29.371 pjsua_media.c .Call 2: deinitializing media..
07:12:29.371 pjsua_media.c .Call 3: deinitializing media..
07:12:29.371 pjsua_pres.c .Shutting down presence..
07:12:30.379 pjsua_core.c .Destroying...
07:12:30.380 pjsua_media.c .Shutting down media..
07:12:30.381 sip_endpoint.c .Destroying endpoint instance..
07:12:30.383 sip_endpoint.c .Module "mod-msg-print" unregistered
07:12:30.383 sip_transport. .Destroying transport manager
07:12:30.384 timer.c .Dumping timer heap:
07:12:30.385 timer.c . Cur size: 0 entries, max: 3070
07:12:30.385 sip_endpoint.c .Endpoint 0x245697c destroyed
07:12:30.386 pjsua_core.c .PJSUA state changed: CLOSING --> NULL
07:12:30.387 pjsua_core.c .PJSUA destroyed...

10

