
 1: You can also use 8 male to female jumper cables and connect them using the breadboard

1

4x20 LCD Display with I2C I/O Expander Guide

Introduc�on:
 This Guide will walk through the steps needed to connect the 4x20 LCD display to the

Beagle Bone Green using I2C. We will go over how to communicate with the I/O expander, and

then look at how the I/O expander communicates with the LCD screen.

Hardware:

 1 – 4x20 LCD Display (2004A – V20):

4 – Female to Female jumper cables1:

Table of Contents

1. Wiring……..2

2. I2C Communica4on with I/O Expander...4

3. Communica4on with LCD Display via I/O expander…………………………………………..5

4. Sample C Code………………………………………………………………………………………………….7

2

1. Wiring

Since we are connec4ng to the screen via an I2C expander, we only need 4 jumpers.

These 4 jumpers correspond to the channels needed for a basic I2C slave device to

communicate with a master:

1) GND: The ground pin used to complete the circuit needed to power the LCD display

and I/O expander.

2) VCC: The pin the supplies power to the LCD display and I/O Expander (3.3v)

3) SDA: The pin used to send data to the I/O expander.

4) SCA: The pin used to send clock pulses to the I/O expander.

IMPORTANT
It is recommended that the following steps are a:empted when the beagle bone is powered off.

This will help prevent poten4ally shor4ng the beagle bone when fidge4ng with pins.

First connect the 4 female to female jumpers to the pins on the I/O Expander:

Next, we will connect these jumpers to P9 header pins on the zen cape a:ached to the beagle

bone:

1) GND2: Connect this jumper to P9_02

2) VCC2 : Connect this jumper to P9_03

3) SDA3: Connect this jumper to P9_18

4) SCA3: Connect this jumper to P9_17

2: The GND jumper can be connected to any pin marked as ‘gnd’ and the VCC jumper can be connected to any pin

marked as ‘3.3v’ in the header reference h:ps://opencoursehub.cs.sfu.ca/bfraser/grav-

cms/cmpt433/guides/files/bbg_docs/BeagleboneBlackP9HeaderTable.pdf

3: The SDA and SCL jumpers can be connected to either P9_18, P9_17 or P9_20, P9_19. This will then determine

the I2C bus we will be working with. In this guide we will be using I2C bus 1 (P9_18, P9_17). More info regarding

the I2C bus can be found at: h:ps://opencoursehub.cs.sfu.ca/bfraser/grav-cms/cmpt433/guides/files/I2CGuide.pdf

3

Once the jumpers are connected you should be able to turn on the beagle bone green and the

display’s backlight should turn on, indica4ng the gnd and vcc pins are connected properly:

NOTE: If the backlight is on but the black squares are not visible, this is due to the backlight

being too bright. You can toggle the backlight level by turning a small poten4ometer on the I/O

expander. It is recommended to use a small Philips screwdriver:

GND connected to P9_02

VCC connected to P9_03

SDA connected to P9_18

SCL connected to P9_17

Turn the small grey ‘+’

4

2. I2C Communica�on with I/O Expander
 Now that the LCD display is properly connected to the beagle bone, we can interface

with it. We have connected the display via I2C on pins P9_18 and P9_17, and to use the pins for

I2C we need to first configure them with the following commands:

 $(bbg) config-pin P9_17 i2c

 $(bbg) config-pin P9_18 i2c

Next, to confirm the screen is connected via I2C run:

 $(bbg) i2cdetect -y -r 1

You should see the LCD screen at 0x27:

Now that we have confirmed the LCD screen is connected to the beagle bone via I2C, we will go

over how exactly we communicate with the I/O expander.

We will communicate with the I/O expander by sending 1 byte at a 4me. Each byte XXXXYYYY

has the following format:

 XXXX – The data/instruc4on to be passed along to the LCD Display

 YYYY – Toggles pins on the LCD display

The data/instruc4on bits depend on the data/instruc4on being sent; however, the toggle bits

have specific func4onality related to the LCD display:

 Y3Y2Y1Y0: Y3 – Unused

 Y2 – toggles E Pin

 Y1 – toggles R/W pin

 Y0 – toggles R/S pin

More specific informa4on about the I/O expander can be found at:

h:ps://www.mouser.ca/datasheet/2/302/PCF8574_PCF8574A-1127673.pdf

5

3. Communica�on with LCD Display via I/O expander

As we have seen, to communicate with the LCD screen via I2C, we must first communicate with

the I/O expander. We have also seen that the lower 4 bits of the I2C message to the I/O

expander are reserved for pin configura4ons, leaving us with only 4 bits to send data. Further,

Looking at the data sheet for the LCD screen found at:

h:ps://image.dfrobot.com/image/data/DFR0154/LCD2004%20hd44780%20Datasheet.pdf

We can see that the instruc4ons consist of 8 bits:

 Fig 1

This may seem like a problem, as we need to send 8 bit instruc4ons using only 4 bits. However,

the LCD screen has a built in mode for this, namely “4 bit mode”. This allows us to send some 8

bit data by spliSng it up into two nibbles and sending them in two separate I2C messages, with

the high order nibble being sent first:

For example, say we want to send the le:er ‘H’ to the screen (ASCII = 01001000) ignoring the

lower 4 bits related to pin toggling:

 We would first send ‘0100XXXX’ (where XXXX represents lower 4 pin toggling bits)

 And then ‘1000XXXX’ (where XXXX represents lower 4 pin toggling bits)

6

Further, the LCD screen operates on specific 4ming. This means that certain pins must be

toggled at certain 4mes in order for data to be read into the LCD’s internal registers. In 4 bit

mode the 4ming is:

Now looking at exactly what RS, R/W and E represent:

We can see exactly how to clear the display and set the cursor to the first line (Fig 1)(00000001):

We first send the higher nibble (0000), set the E pin high (1), set R/W low (0) since we are

wri4ng, and set RS low (0) since this is an instruc4on.

00000100

Then we send a pulse low, signaling the LCD screen to read the 4 high order bits into internal

registers:

00000000

Then we send the low order nibble along with a high pulse:

00010100

And finally, we send a low pulse to signal the LCD to read the 4 high order bits into internal

registers (since we have enabled 4 bit mode, execu4ng these steps back to back will result in the

7

LCD accep4ng the first data nibble as the high order bits and the second data nibble as being

the low order bits)

00000000

This is the general format for displaying characters on the screen or execu4ng instruc4ons:

Find the ASCII code for the desired char or look to the LCD manual for the desired instruc4on.

Once found, send the high order bits XXXX along with 010Z, where Z is 1 if it is an instruc4on, or

0 if it is char data. Followed by a low pulse (00000000), then the low order nibble (XXXX010Z)

followed by a low pulse (00000000).

4. Sample C Code

Below is some code related to ini4alizing the LCD display and displaying any ASCII char

AVer the screen has been ini4alized, we can then send an ASCII le:er using the func4on:

8

This func4on takes the ASCII value of the character and sends the high data bits XXXX along with the

required pin configura4on to write data (0x05) 0101 (high E pulse, write, data), followed by the low data

bits.

