Streaming Webcam Video to a Browser

Team: Beagle Rangers

This guide will walk you through the necessary steps to display onto a browser the
video from a webcam. Using C and Node.js, the overall process is made significantly
easier due to a JavaScript library called JSMpegq. This guide assumes that you already
have a website and a Node.js server, all set and ready to go.

1. Follow a guide to set up the webcam for your BeagleBone

There are some good guides that you can follow to get the webcam working for your
BeagleBone. Here are some notable ones that worked for us:

e Recording Webcam Videos with the BeagleBone Black
e Capturing and Streaming Webcam Video with the BeagleBone Green

Before going to the next step, ensure that your webcam works with the BeagleBone and
is able to send its video feed over a UDP stream. You should have a working capture.c

file (from Derek Molloy’s boneCV repository) working with FFmpeg.
2. Set up a website
In your index.html file, include a canvas element with a set id. Additionally, include the

JSMpeg package by downloading the bundled .min.js file and referencing it from a script
tag.

<body>
<canvas id="self-view"></canvas>

<script src="js/jsmpeg.min.js" type="text/javascript"></script>
<script src="js/webcam.js" type="text/javascript"></script>
</body>

https://jsmpeg.com/
https://opencoursehub.cs.sfu.ca/bfraser/grav-cms/cmpt433/links/files/2015-student-howtos/RecordingWebcamVideos.pdf
https://opencoursehub.cs.sfu.ca/bfraser/grav-cms/cmpt433/links/files/2017-student-howtos/CapturingAndStreamingWebcamVideoOnBBG.pdf
https://github.com/derekmolloy/boneCV
https://github.com/phoboslab/jsmpeg

Add a JSMpeg Player to the client by typing the following to webcam.js:

const WS_ADDR "192.168.7.2";
const WS_PORT 8088;
const options = {

canvas: $("#self-view")

}s

new JSMpeg.Player(ws://${WS_ADDR}:${WS_PORT} , options);

3. Set up a Node.js server

On the Node.js side of things, create two files, server.js and stream.js. Write the normal
code in your server.js file to serve your index.html to the user. stream.js is there to help
with the modularity. In server.js, make sure to add the following to activate the stream.js
code.

import stream from
stream.listen();

./lib/stream.js";

In stream.js, add the following:

import WebSocket, {WebSocketServer} from "ws";
import dgram from "dgram";

const UDP_STREAM_ADDR
const UDP_STREAM PORT
const WS_PORT = 8088;
const wSocketServer = new WebSocketServer({
perMessageDeflate: false,
port: WS_PORT

"192.168.7.2";
8080;

1)

wSocketServer.broadcast = (data) => {
wSocketServer.clients.forEach((client) => {
if (client.readyState === WebSocket.OPEN) {
client.send(data);

})s
¥
wSocketServer.connectionCount = 0;
wSocketServer.on("connection”, (socket, upgradeReq) => {
wSocketServer.connectionCount++;
wSocketServer.on("close", (code, message) => {
wSocketServer.connectionCount--;

1)
1)

export default {
listen: () => {
const udpSocket = dgram.createSocket("udp4");

udpSocket.bind(UDP_STREAM PORT, UDP_STREAM_ADDR);

udpSocket.on("listening", () => {});

udpSocket.on("message"”, (chunk, rinfo) => {
wSocketServer.broadcast(chunk);

1)
}s

From the code in webcam.js, we created a listening UDP socket that catches the UDP
stream of the webcam video from capture.c. We also need to create a WebSocket
server that passes the encoded webcam video from the UDP stream to be received and
decoded by a JSMpeg Player in the client (hence, the code written in webcam.js).

4. Run the binary from capture.c

Once you compile your capture.c program, you will be able to run the resulting binary to
drive the webcam and pipe the raw output to FFmpeg. Although the above guides from
the first step do show you the exact command for it, we will need to alter the command
slightly. We want to work with the mpegts format instead of the mpeg format because
JSMpeg only works with the mpegts format. This allows it to automatically decode the
encoded stream and display it quickly. The new terminal command is as follows:

/capture -F -0 -c0 | ffmpeg -i pipe:0 \
-f mpegts -codec:v mpeg1video \
-S 640x480 -b:v 1024k -bf 0 udp://192.168.7.2:8080

5. Run the Node.js server

Hopefully, all should be working at this point. You can now run your Node server,
serving your users with a website that receives and displays a webcam stream.

6. Stuck? Some troubleshooting tips below

Make sure to go through a webcam guide before proceeding with this guide. Some
useful guides are listed in the first section (Step 1). Specifically, verify that FFmpeg is
able to stream successfully to your VLC media player.

Verify that you have your IP addresses and port numbers set correctly. Specifically,
there are three different port numbers to keep in mind. One port is used for the HTTP
server to serve the website. Another is used for the UDP stream between FFmpeg
command and the listening UDP socket on the Node server, and the third one is used
between the WebSocket server (on the Node server) and the client's JSSMpeg Player.

For more information about JSMpeg, take a look at its detailed documentation.

https://github.com/phoboslab/jsmpeg

