
1

Servo & PWM Guide: SG90 9g Micro Servo
For Linux Kernel 4.9.78-ti-r94 BeagleBone Firmware Image
by Catherine Riopel, Noel Riopel, Daniel Gomes Maia Filho - with additions and adaptations from Dr.
Brian Fraser’s PWM Guide.
Created: April 12, 2022

This document guides the user through:
1. Loading PWM support.
2. Wiring and schematic of a SG90 9g Micro Servo.
3. Driving a SG90 9g Micro Servo via PWM from a Linux terminal.

Table of Contents
1. PWM Basics...2
2. Load PWM Device Tree – Edit uEnv.txt...3
3. Servo Basics…….......4
4. Wiring the Servo………………………………………………………………………………………………………......……….….5
5. Linux PWM: Servo...6

Formatting:
1. Host (desktop) commands starting with (host)$ are Linux console commands:

(host)$ echo "Hello world"

2. Target (board) commands start with (bbg)$:
(bbg)$ echo "On embedded board"

3. Almost all commands are case sensitive.

2

1. PWM Basics

Pulse-width modulation (PWM) is a way of generating a digital wave form (think of a clock signal). You
can specify two main components of the digital wave form:

1. Period: How much time is there
between the start of one cycle and
the next. This is the time between
rising edges of the wave form.

2. Duty: This is the percentage of the
cycle which the signal is high (or
low, depending on its configuration).

Together, these two parameters allow you to
generate waves such as those shown in
Figure 1.

In some situations, an analog voltage is
needed. A PWM wave can be used to create
such a voltage by applying extra hardware
(capacitors) to smooth out, or average out,
the wave form. For example, when the
signal is between 0 and 3.3V, a 50% duty
cycle would average out to 1.65V (half of
3.3V).

Zen cape aside:
We will not be utilizing the Buzzer nor the LEDs for this guide, but for reference, with the universal cape
enabled, the PWM channels used by the Zen cape are listed below. Note that not all PWM channels are
used by the Zen cape: some are unused on the BBG, and others are used by the HDMI hardware.

Zen Cape
Use

PWM
Channel

BBG
Pin

Linux Path Notes

Buzzer PWM-0A P9-22 /sys/class/pwm/pwmchip0/pwm0/

Red LED PWM-1B P9-16 /sys/class/pwm/pwmchip2/pwm1/ Shares PWM hardware timer with
Blue LED (PWM-1A)

Green LED PWM-2A P8-19 /sys/class/pwm/pwmchip4/pwm0/

Blue LED PWM-1A P9-14 /sys/class/pwm/pwmchip2/pwm0/ Shares PWM hardware timer
with Red LED (PWM-1B)

Note that for PWM channels which share PWM hardware timers (red and blue), you cannot change the
period of these channels independently. See Section 4 for more.

3

2. Load PWM Device Tree – Edit uEnv.txt
Linux can learn about the PWM hardware in two ways, the universal cape, and the overlays in the device
tree found in /boot/uEnv.txt. For this servo & PWM guide we will be utilizing device tree overlays.
To load PWM overlays via uEnv.txt, do the following

1. Update the cape overlays:
sudo apt-get update

sudo apt-get install bb-cape-overlays

o You must have an internet connection for this to succeed.
2. Ensure you have an up-to-date version (as of April 12, 2022):

apt-cache show bb-cape-overlays

Package: bb-cape-overlays

Version: 4.14.20210821.0-0~buster+20210821

Architecture: armhf

....

3. Copy the current uEnv.txt file. This is necessary for recovering from anything going wrong!
sudo cp /boot/uEnv.txt /boot/uEnv-BeforePwm.txt

4. Edit the uEnv.txt file to enable the PWM overlays
sudo nano /boot/uEnv.txt

o Edit the Additional custom capes section.
Below shows the setup you’ll have if you are already loading the audio cape and the I2C-1
cape. If you are not loading these, you may comment out those lines
###Additional custom capes

uboot_overlay_addr4=/lib/firmware/BB-BONE-AUDI-02-00A0.dtbo

uboot_overlay_addr5=/lib/firmware/BB-I2C1-00A0.dtbo

uboot_overlay_addr6=/lib/firmware/BB-PWM0-00A0.dtbo

uboot_overlay_addr7=/lib/firmware/BB-PWM1-00A0.dtbo

uboot_overlay_addr3=/lib/firmware/BB-PWM2-00A0.dtbo

o The highlighted overlays are PWM overlays, these are maintained and found in the following
repository: https://github.com/beagleboard/bb.org-overlays/tree/master/src/arm.

o To get a deeper understanding of which overlay controls which pins, take a look at the
following dts files,
P9-21(ehrpwm0B) & P9-22(ehrpwm0A):
https://github.com/beagleboard/bb.org-overlays/blob/master/src/arm/BB-PWM0-00A0.dts
P9-14(ehrpwm1A) & P9-16(ehrpwm1B):
https://github.com/beagleboard/bb.org-overlays/blob/master/src/arm/BB-PWM1-00A0.dts
P8-13(ehrpwm2B) & P8-19(ehrpwm2A):
https://github.com/beagleboard/bb.org-overlays/blob/master/src/arm/BB-PWM2-00A0.dts

o Note that you can use uboot_overlay_addr0 through uboot_overlay_addr7 for any
of the capes being loaded. If you use 0-3, it replaces the cape support for any automatically
detected capes configured to load at that slot. If you have no physical capes connected
(which are automatically detected), then you can use any of the 8 slots you like. This is why
the above snippet uses 3 through 7. The number dictates the order they are loaded, which
should not matter here.

o You only need to load the capes you need, for this servo guide we will only be utilizing
BB-PWM0-00A0.dtbo.

5. Reboot the target
6. Troubleshooting

o See the Audio guide’s last section (on the course website) to recover from a corrupted
uEnv.txt. You should be able to copy back the /boot/uEnv-BeforePwm.txt to
restore your previous working state.

2024 Note from Dr. Brian
Changing uEnv.txt unnecessary; consult PWM guide.

https://github.com/beagleboard/bb.org-overlays/tree/master/src/arm
https://github.com/beagleboard/bb.org-overlays/blob/master/src/arm/BB-PWM0-00A0.dts
https://github.com/beagleboard/bb.org-overlays/blob/master/src/arm/BB-PWM1-00A0.dts
https://github.com/beagleboard/bb.org-overlays/blob/master/src/arm/BB-PWM2-00A0.dts

4

3. Servo Basics

A servo motor is a motor whose shaft position can be controlled precisely. The motor has an internal
servomechanism that provides positional feedback so that the servo may know what position its shaft is
in. We may control the position of the shaft with PWM.

In Figure 2 we see 3 digital wave forms for our
SG90 9g Micro Servo.
To move our servo to the 0-, 90-, and 180-
degree positions, we want to set the period to
20ms as shown.

But what does that mean? Let’s brush up on
some physics:
A period can be defined as the leading
edge/start of one pulse to the leading edge of
another pulse.
The pulse width can be defined as the measure
of the elapsed time between the leading and
trailing edge of one pulse.
A duty cycle is the percentage of the period that
the signal is active/on.

Now we have some understanding of reading
these digital wave forms, we can see that the
duty cycle for one period varies between a
pulse width of 1ms (0 degrees) to 2ms (180
degrees). So, by manipulating the timing for
which the signal is on, we also affect the
percentage of the period the signal is on, thus
we affect the duty cycle.

A period of 20ms and duty cycle of 1ms will
move the shaft to a 0-degree position.
We can also achieve a 90-degree position with a
duty cycle of 1.5ms, and a 180-degree shaft
position with a duty cycle of 2ms.

Figure 2: Image of the SG90 9g Micro Servo and its
respective digital wave forms that describe period,
pulse-width, and shaft degree. From,
https://www.engineersgarage.com/servo-motor-
sg90-9g-with-89c51-microcontroller/

https://www.engineersgarage.com/servo-motor-sg90-9g-with-89c51-microcontroller/
https://www.engineersgarage.com/servo-motor-sg90-9g-with-89c51-microcontroller/

5

4. Wiring the Servo

Understanding the schematic

Figure 3 shows a schematic of connecting a
servo to the BeagleBone Green.

The servo motor has three wires, brown for
ground, orange for the signal, red for power.
The operating voltage needed for this servo is in
between approximately 4.8V to 6V, since the
BBG has a 5V pin we will use that. As such, we
connect the red wire to a SYS_5V pin on the
BBG either P9-7 or P9-8, the brown wire to a
DGND pin (there are several on the P9 and P8
headers), and the orange wire to a EHPWM
designated pin (8 available across P9 and P8).
See Figure 4 for more details.

The schematic also shows two 470Ω resistors in
series, which achieves a 940Ω resistance. Why
this resistance?

Figure 3: schematic that describes the wiring of the
servo to the BBG include resistance and BBG pins
needed.

Here is the physics of the “servo to resistor to resistor to GPIO pin” series:

Total resistance = 470Ω + 470Ω = 940Ω

Voltage = 5V

Current = V/R = 5V/940Ω = 0.00532A (Same throughout)

V1 = I1 * R1 = 0.00532A * 470Ω = 2.5V

V2 = I2 * R2 = 0.00532A * 470Ω = 2.5V

Since the GPIO pin we use (the pin connected to the orange wire) can take 3.3V, we are under 3.3V.

Figure 4, Highlighted PWM and timer headers for BBG, from https://beagleboard.org/Support/bone101/#headers.

https://beagleboard.org/Support/bone101/#headers

6

5. Linux PWM: Servo

For this guide, as we will be using the BB-PWM0-00A0.dtbo overlay. This overlay corresponds to P9-21
(EHRPWM0B) and P9-22 (EHRPWM0A) pins, we will only be using P9-21.

1. To begin export the PWM functionality for the servo, we first need to find out what pwmchip is
in use. The pwmchips change on every boot, so, if you have multiple PWM overlays enabled in
uEnv.txt, you must first figure out which pwmchip corresponds to which pins. Fun! If you
have only one PWM overlay enabled in uEnv.txt, then your job is easy and there should only
be one pwmchip shown if you navigate to /sys/class/pwm. Follow your case below:

• If you have multiple overlays:
1. Although the pwmchips assigned will change with each boot, what stays

constant it the address in which the EHRPWMs reside, so let’s find those.
If we look at Figure 5, the red lines indicate the start address in which we may
find the PWMS.
From the headers in Figure 4, we can gather that,
P9-21 & P9-22 correspond to ePWM0 (overlay BB-PWM0-00A0.dtbo),
P9-14 & P9-16 correspond to ePWM1 (overlay BB-PWM1-00A0.dtbo), and
P8-13 & P8-19 correspond to ePWM2 (overlay BB-PWM2-00A0.dtbo).

Figure 5, Peripheral Memory Map located on Pg. 182 of TI-am3359 TRM.
2. Now that we know which addresses pertain to which ePWM’s we can find

which pwmchip each one uses. Based off of commands found in the
beagleboard repo, https://github.com/beagleboard/bb.org-
overlays/blob/master/examples/cape-unversal-pwm.txt, we can see the
matching addresses from the memory map and ls to find the appropriate
chip.

https://github.com/beagleboard/bb.org-overlays/blob/master/examples/cape-unversal-pwm.txt
https://github.com/beagleboard/bb.org-overlays/blob/master/examples/cape-unversal-pwm.txt

7

#P9.21/P9.22

#ls -lh /sys/devices/platform/ocp/48300000.epwmss/48300200.pwm/pwm/

#P9.14/P9.16

#ls -lh /sys/devices/platform/ocp/48302000.epwmss/48302200.pwm/pwm/

#P8.13/P8.19

#ls -lh /sys/devices/platform/ocp/48304000.epwmss/48304200.pwm/pwm/

If we do the first ls command for ePWM address 48300200, the output should
look something like this:
total 0

drwxrwxr-x 5 root pwm 0 Jan 1 2000 pwmchip0

The highlighted pwmchip shows us which pwmchip we will use for P9-21 and P-
22!

• If you have only one PWM overlay, your job is easy and there should only be one
pwmchip shown in /sys/class/pwm.

2. Now that we have the pwmchip we need, we can export the pin we will use to control our servo,
pin P9-21. We know that P9-21 corresponds to EHRPWM0B & P9-22 corresponds to EHRPWM0A
via Figure 4. Both belong to the same pwmchip, so to only use one we must export that specific
pin. To export an ‘A’ EHRPWM pin you navigate to the pwmchip and write a 0 to the export file,
to export a ‘B’ EHRPWM pin you write a 1 to the export file.

Let’s say that on boot our P9-21 corresponds to pwmchip0, as such, P9-21 is a ‘B’ ePWM pin so
we may write a 1 to the export file:
(bbg)$ /sys/class/pwm/pwmchip0$ echo 1 > export

If you list the files in the pwmchip directory, you should see:
(bbg)$:/sys/class/pwm/pwmchip0$ ls

device export npwm power pwm1 subsystem uevent unexport

3. Next, we navigate to pwm1 and set the period to 20ms, the period takes in ns so 20ms =

20000000ns:

(bbg)$ /sys/class/pwm/pwmchip0/pwm-0:1$ echo 20000000 > period

(bbg)$ /sys/class/pwm/pwmchip0/pwm-0:1$ cat period

20000000

o Note in the event you want to use both pins know that these pins share hardware so you
may not change the period of these channels independently

o In fact, the software won't let you change P9-21/P9-22’s period at all if you have both
PWM channels' periods set. Specifically, you can set and change the period of one of the
P9-21 or P9-22’s PWM channels until the other one is given a period. Then, you can only
change the period of one to match the other.

o In other words, set the period to something reasonable to start and then don’t change it.

4. Now we can set the duty cycle. Let’s move the position of the shaft to a 90-degree position,

meaning we need to give the duty cycle a value of 1.5ms or 1500000 ns:

(bbg)$ /sys/class/pwm/pwmchip0/pwm-0:1$ echo 1500000 > duty_cycle

(bbg)$ /sys/class/pwm/pwmchip0/pwm-0:1$ cat duty_cycle

15000000

5. Finally, we enable the pin and watch the servo move:
(bbg)$ /sys/class/pwm/pwmchip0/pwm-0:1$ echo 1 > enable

(bbg)$ /sys/class/pwm/pwmchip0/pwm-0:1$ cat enable

1

8

7. Troubleshooting:

• If you get the messages for an unknown folder when you try to export the PWM? You
likely don’t yet have the hardware support loaded yet. Follow the steps in section 2 -
Load PWM Device Tree.

• “Permission denied” error trying to write to a file: You either incorrectly used sudo tee
(if executing from a .sh script) or have not yet exported the PWM for that pin.

• “Device or resource busy” when trying to export: the PWM is likely already exported.

• “Invalid argument” when writing 1 to the enable file likely means you have not yet set
the period or duty_cycle correctly.

• Unable to change period of P9-21/P9-22: This is by design, since both PWMs are linked,
and the period cannot be changed.

