Wiring and control controlling

Adafruit’s NeoTrellis 4x4 LED and button matrix

by Audio Group (Spring 2022)
Last update: April 13, 2022
Target device: BeagleBone Green

Target OS: Linux 4.9+

Preamble

This how-to guide expands on the guide provided by previous CMPT433 students with the focus
on explaining the Adafruit’s SeeSaw chip’s register structure and functions. It is better to use
this guide in conjunction with the previous students’ guide. The link to the guide is provided in
the Reference section and C file examples are provided in the Support Files section.

Table of Contents

1. Wiring the matrix to BeagleBone GIEEIccccccueeeiieeiieiieeiieeceeeieeeieeeteeseeesreeeseeesaeesveenns 2
2. Basici2c communication protocol with Adafruit’s seesaw chip.......ccccceevvieerveiniieiniiennienneennen. 4
3. Controlling the matrix’s LEDs and BUttOnS.........ccccecieriiiiniieinieiieeeenieeeie et seesve e 4
e RETEIEIICES.uvveeieiieteee ettt ceetre e e e eeetae e e e sesabeseeeessstaseeesessseseesesssassesesasbansessensrneeesenses 5

1. Wiring the matrix to BeagleBone Green

1.1 You will need the following wires:

e 4 Jumper Male to Female Wires
* 1Female to Female 4 pin connector cable

1.2 Connecting to the BeagleBone:
The matrix has 4 pins:
* GND (ground)

* VIN (power)
 SDA (data)
* SCL (clock)

First, we need to look on the BeagleBone’s P8 and P9 expansion headers to determine which

pins we need to connect the matrix to.

P9 P8
12 ____DGND [DGND
3 4 GPIO_38 3 | 4 GPIO_39
5 6 GPIO_34 | 5 6 | GPIO_35
7 8 GPIO_66 7 GPIO_67
9 10 GPIO_69 9 IO'GPIO_68
GPIO_30 11 12 GPIO_60 GPIO_45 11 12 GPIO_44
GPIO_31 13 14 GPIO_S50 GPIO_23 |13 14 GPIO_26
GPIO_48 15 16 GPIO_51 GPIO_47 15 16 GPIO_46
GPIO_5 17 18 GPIO_4 GPIO_27 |17 18 GPIO_65
19 20 GPIO_22 19 20 GPIO_63
GPIO_3 21 22 GPIO_2 GPIO_62 21 22 GPIO_37
GPIO_49 23 24 GPIO_15 GPIO_36 23 24 GPIO_33
GPIO_117 25 26 GPIO_14 GPIO_32 | 25 26 GPIO_61
GPIO_115 27 28 GPIO_113 GPIO_86 27 28 GPIO_88
GPIO_111 29 30 GPIO_112 GPIO_87 29 30 GPIO_89
GPIO_110 31 GPIO_10 31 32 GPIO_11
" GPIO_9 |33 34 GPIO_81
GPIO_8 35 36 GPIO_80
GPIO_78 37 38 GPIO_79
GPIO_76 39 | 40 GPIO_77
GPIO_74 41 42 GPIO_75
GPIO_72 43 44 GPIO_73
GPIO_70 45 46 GPIO_71

We will connect the matrix to the BeagleBone in the following way:

GND pinto Pg_1
VIN pin to Pg_7
SCL pin to P9_19

SDA pin to Pg_20

This particular wiring connects the matrix to the BeagleBones I12C2 bus, but if you wish to
connect to the I2C1 bus, use Pg_17 (SCL) and Pg_18 (SDA) instead.

The wiring will look like the following

1.3 Check if the wiring was successful

Run the following command on the BeagleBone to display all devices connect on the I12C2 bus:
(bbg)$ i2cdetect -y -r 2

The output should be:

The matrix has a default address of 0x2e (46 in decimal), dump its internal registers with the
following command:

(bbg)$ i2cdump -y 2 ox2e.
The output should be:

5 6 7 8 9 a b c d e f 0123456789abcdef
ff £f ff ff ff £f ff ff ff £ XX
XX XX XX XX XX XX XX XX XX XX XX XOXOKXKXXXXXXXXXXX]

XX XX XX XX XX XX XX XX XX XX XX XXXXXXXXXXXXXXXX
XX XX XX XX XX XX XX XX XX XX XX XXXXXXXXXXXXXXXX
XX XX XX XX XX XX XX XX XX XX XX XXXXXXXXXXXXXXXX
XX XX XX XX XX XX XX XX XX XX XX XXXXXXXXXXXXXXXX

2 I2C communication protocol with Adafruit’s seesaw chip

2.1 I2¢ writing to the seesaw chip
To write into the seesaw chip, we need to send 2 register bytes first followed by data bytes.

The first byte is the module base register address which indicates which module of the
matrix we want to communicate with. You can find all the available module registers from
Adafruit’s website in the Reference section.

The second byte indicates the module function register address which specifies the desired
function within the module.

I2C write transaction will look like the following:

I2C write header Module base register | Module function Data to write
(1 byte) register (1 byte)

2.2 I2¢ reading from the seesaw chip

To read from the seesaw chip register, we need to initiate a write to the desired module base and
module function registers first. After allowing a short delay, send a standard i2c read header to
the chip.

I2C read transaction will look the following:

i)

I2C write header Module base register (1 byte) | Module function register
(1 byte)
ii)
| I2C read header | Buffer to read to | Size of the buffer

3 Controlling the matrix’s LEDs and Buttons
3.1 Lighting up the LEDs

All the registers that deal with LEDs of the matrix are in the module base register located at
0xOE, called NeoPixel.

Within the NeoPixel module there are 4 module registers that we used:

i) PIN — address: 0x01 — 8 bits

ii) BUF_LENGTH - address: -0x03 — 16 bits
iii) BUF - address: 0x04 — 32 bytes

iv) SHOW - address: 0x05 — 0 bytes

PIN register indicates the pin number to output from. We will use oxo1 for the pin register.
BUF__LENGTH register indicates the size of the internal LED buffer (in bytes). We will use the
size of 48 bytes (1 byte for each of the RGB component with 16 pixels in total).

BUF register holds data for RGB components. The first 2 bytes indicate are the offsets for a
pixel’s index on the matrix.
SHOW register updates the output.

3.2 Controlling Buttons

All the registers that deal with the buttons of the matrix are in the module base register located
at 0x10, called Keypad.

Within the Keypad module there are 3 module registers that we used:

i) KeypadEvent — address: 0x01
ii) KeypadEventCount — address: 0x04
iii) KeypadFifo — address: 0x10

KeypadEvent register sets an event for a particular event key. The event key for a button at

index x is calculated by the formula: x/ 4 * 8 + x % 4. There are three possible events that can be

set for a button:

 TRELLIS_RISING_EDGE, registers an event when a button is pushed. It has the value of
ox11.

« TRELLIS_EVENT_FALLING_EDGE, registers an event when a button is released. It
has the value of 0x09.

¢ Both TRELLIS_RISING_EDGE and TRELLIS_ EVENT_FALLING_EDGE.

KeypadEventCount register stores the number of events that the matrix has registered since
the last time a read from the register has occurred.

KeypadFifo buffer stores events that have occurred in a FIFO manner. To map the registered
event x to an index in the matrix we need to first apply the following procedure: key = (x >>2) &
0x3F.Then apply the following formula to the result: key / 8 * 4 + key % 8.

4. References

i) Previous students’ how-to guide:
https://opencoursehub.cs.sfu.ca/bfraser/grav-cms/cmpt433/links/files/2019-student-
howtos/AdafruitNeoTrellisgx4LedButton.pdf

ii) Overview of the seesaw chip:
https://learn.adafruit.com/adafruit-seesaw-atsamdo9-breakout?view=all#using-the-
seesaw-platform

iii) I2C guide:
https://opencoursehub.cs.sfu.ca/bfraser/grav-cms/cmpt433/guides/files/I12CGuide.pdf

