
1

Wiring and control controlling

Adafruit’s NeoTrellis 4x4 LED and button matrix

by Audio Group (Spring 2022)

Last update: April 13, 2022

Target device: BeagleBone Green

Target OS: Linux 4.9+

Preamble

This how-to guide expands on the guide provided by previous CMPT433 students with the focus

on explaining the Adafruit’s SeeSaw chip’s register structure and functions. It is better to use

this guide in conjunction with the previous students’ guide. The link to the guide is provided in

the Reference section and C file examples are provided in the Support Files section.

Table of Contents

1. Wiring the matrix to BeagleBone Green …………………………………………………………………………2

2. Basic i2c communication protocol with Adafruit’s seesaw chip…………………………………………4

3. Controlling the matrix’s LEDs and Buttons……………….……………………………………………………4

4. References……5

2

1. Wiring the matrix to BeagleBone Green

1.1 You will need the following wires:

• 4 Jumper Male to Female Wires

• 1 Female to Female 4 pin connector cable

1.2 Connecting to the BeagleBone:

The matrix has 4 pins:

• GND (ground)

• VIN (power)

• SDA (data)

• SCL (clock)

First, we need to look on the BeagleBone’s P8 and P9 expansion headers to determine which

pins we need to connect the matrix to.

We will connect the matrix to the BeagleBone in the following way:

GND pin to P9_1

VIN pin to P9_7

SCL pin to P9_19

SDA pin to P9_20

This particular wiring connects the matrix to the BeagleBones I2C2 bus, but if you wish to

connect to the I2C1 bus, use P9_17 (SCL) and P9_18 (SDA) instead.

3

The wiring will look like the following

1.3 Check if the wiring was successful

Run the following command on the BeagleBone to display all devices connect on the I2C2 bus:

(bbg)$ i2cdetect -y -r 2

The output should be:

 0 1 2 3 4 5 6 7 8 9 a b c d e f

00: -- -- -- -- -- -- -- -- -- -- -- -- --

10: -- -- -- -- -- -- -- -- UU -- -- -- -- -- -- --

20: -- -- -- -- -- -- -- -- -- -- -- -- -- -- 2e --

30: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --

40: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --

50: -- -- -- -- UU UU UU UU -- -- -- -- -- -- -- --

60: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --

70: -- -- -- -- -- -- -- --

The matrix has a default address of 0x2e (46 in decimal), dump its internal registers with the

following command:

(bbg)$ i2cdump -y 2 0x2e.

The output should be:

 0 1 2 3 4 5 6 7 8 9 a b c d e f 0123456789abcdef

00: ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff XX X

10: XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX XXXXXXXXXXXXXXXX

20: XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX XXXXXXXXXXXXXXXX

30: XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX XXXXXXXXXXXXXXXX

40: XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX XXXXXXXXXXXXXXXX

50: XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX XXXXXXXXXXXXXXXX

4

2 I2C communication protocol with Adafruit’s seesaw chip

2.1 I2c writing to the seesaw chip

To write into the seesaw chip, we need to send 2 register bytes first followed by data bytes.

The first byte is the module base register address which indicates which module of the

matrix we want to communicate with. You can find all the available module registers from

Adafruit’s website in the Reference section.

The second byte indicates the module function register address which specifies the desired

function within the module.

I2C write transaction will look like the following:

I2C write header Module base register
(1 byte)

Module function
register (1 byte)

Data to write

2.2 I2c reading from the seesaw chip

To read from the seesaw chip register, we need to initiate a write to the desired module base and

module function registers first. After allowing a short delay, send a standard i2c read header to

the chip.

I2C read transaction will look the following:

i)

I2C write header Module base register (1 byte) Module function register
(1 byte)

ii)

I2C read header Buffer to read to Size of the buffer

3 Controlling the matrix’s LEDs and Buttons

3.1 Lighting up the LEDs

All the registers that deal with LEDs of the matrix are in the module base register located at

0x0E, called NeoPixel.

Within the NeoPixel module there are 4 module registers that we used:

i) PIN – address: 0x01 – 8 bits

ii) BUF_LENGTH – address: -0x03 – 16 bits

iii) BUF – address: 0x04 – 32 bytes

iv) SHOW – address: 0x05 – 0 bytes

PIN register indicates the pin number to output from. We will use 0x01 for the pin register.

BUF_LENGTH register indicates the size of the internal LED buffer (in bytes). We will use the

size of 48 bytes (1 byte for each of the RGB component with 16 pixels in total).

5

BUF register holds data for RGB components. The first 2 bytes indicate are the offsets for a

pixel’s index on the matrix.

SHOW register updates the output.

3.2 Controlling Buttons

 All the registers that deal with the buttons of the matrix are in the module base register located

at 0x10, called Keypad.

Within the Keypad module there are 3 module registers that we used:

i) KeypadEvent – address: 0x01

ii) KeypadEventCount – address: 0x04

iii) KeypadFifo – address: 0x10

KeypadEvent register sets an event for a particular event key. The event key for a button at

index x is calculated by the formula: x/ 4 * 8 + x % 4. There are three possible events that can be

set for a button:

• TRELLIS_RISING_EDGE, registers an event when a button is pushed. It has the value of

0x11.

• TRELLIS_EVENT_FALLING_EDGE, registers an event when a button is released. It

has the value of 0x09.

• Both TRELLIS_RISING_EDGE and TRELLIS_EVENT_FALLING_EDGE.

KeypadEventCount register stores the number of events that the matrix has registered since

the last time a read from the register has occurred.

KeypadFifo buffer stores events that have occurred in a FIFO manner. To map the registered

event x to an index in the matrix we need to first apply the following procedure: key = (x >>2) &

0x3F.Then apply the following formula to the result: key / 8 * 4 + key % 8.

4. References

i) Previous students’ how-to guide:

https://opencoursehub.cs.sfu.ca/bfraser/grav-cms/cmpt433/links/files/2019-student-

howtos/AdafruitNeoTrellis4x4LedButton.pdf

ii) Overview of the seesaw chip:

https://learn.adafruit.com/adafruit-seesaw-atsamd09-breakout?view=all#using-the-

seesaw-platform

iii) I2C guide:

https://opencoursehub.cs.sfu.ca/bfraser/grav-cms/cmpt433/guides/files/I2CGuide.pdf

