
PN532 NFC Breakout Board Guide

Last update: April 11, 2022

This document guides the user through:
1. Wiring the PN532 breakout board to the beaglebone
2. Rust program read card/device UID using the PN532 breakout board

Table of Contents

1. Introduction 2

2. Wiring 2
2.1 I2C 2
2.2 Wiring Steps 2

3. PN532 3
3.1 PN532 Commands and Frame Structures 4

4. Getting UID from Cards/Devices using PN532 via Rust 5
4.1 Initialization 5
4.2 Sending Data to PN532 6
4.3 Receiving Data from PN532 7
4.4 Receiving Synchronization Packets from PN532 8
4.5 Getting UID 9
4.6 Main Program 9
4.7 Dependencies 10

5. Troubleshooting 10

1. Introduction
This document will guide you on how to set up the NFC scanner with the Beaglebone Green via
I2C. NFC (near field communication) is a wireless data transfer method that enables two
devices in close proximity to communicate. Through this guide, you will be able to use the NFC
breakout board to read the UID of specific cards including compass cards, credit cards as well
as Android devices.

2. Wiring
We will be using the NFC/RFID controller breakout board (using the PN532 NFC chip) which
can be found here: https://www.adafruit.com/product/364.

2.1 I2C
We will be using I2C to communicate with the PN532 chip. To select I2C as the interface, insert
the jumper into the ON position for SEL0 and the OFF position for SEL1 as shown below.

To connect the NFC breakout board to the beaglebone we will use the I2C2 bus with the SDA
and SCL pin located at P9_20 and P9_19 respectively.

2.2 Wiring Steps
1. Connect the breakout board SDA to BBG P9_20
2. Connect the breakout board SCL to BBG P9_19
3. Connect the breakout board 3.3V to BBG 3.3V (either P9_3 or P9_4)
4. Connect the breakout board GND to BBG GDND (either P9_1 or P9_2)

(Image on the next page)

2

https://www.adafruit.com/product/364

SDA (red wire), SCL (blue wire), 3.3V (green wire), GND (purple wire)

3. PN532
This section reviews some of the command codes and specific frame structures the PN532
requires for input. Upon receiving the command, PN532 will respond with an ACK message and
response packet as shown in the diagram below (source: user manual). More detailed
information can be found in the user manual.

3

https://cdn-shop.adafruit.com/datasheets/pn532um.pdf
https://cdn-shop.adafruit.com/datasheets/pn532um.pdf

3.1 PN532 Commands and Frame Structures
We will be sending the following commands:

1. SAMConfiguration with command code 0x14
- Command used for selecting the path of data flow.
- The mode will have to be specified (we will use 0x01 Normal Mode)

Data Packet: [command code, mode]

2. InListPassiveTarget with command code 0x4A
- Command to detect as many cards/devices as specified by host.
- The maximum number of targets (card/devices) to read at once and the card type

must be specified.
Data Packet: [command code, max # of targets, card type]

We will be receiving the following frames:

1. Information Frame
- This frame is used both by the host (BBG) and target (PN532) to send and

respond to commands
Frame structure: [0x00, 0x00, 0xFF, LEN, LCS, TFI, Data Packet, DCS, 0x00]

- LEN: length of data packet
- LCS: Satisfies [LEN + LCS] = 0x00
- TFI: 0xD4 (from BBG to PN532), 0xD5 (from PN532 to BBG)
- DCS: Satisfies [TFI + PD0 + PD1 + … + PDn + DCS] = 0x00

2. ACK Frame
- This frame is used to notify the host (BBG) that the previous packet was

received.
Frame structure: [0x00, 0x00, 0xFF, 0x00, 0xFF, 0x00]

3. Error Frame
- This frame is used to notify the host (BBG) that an application-level error was

detected.
Frame structure: [0x00, 0x00, 0xFF, 0x01, 0xFF, …]

4

4. Getting UID from Cards/Devices using PN532 via
Rust

4.1 Initialization
The following code configures the i2c pins (enable_bus()) and initializes the NFC breakout
board, sending the SAMConfiguration command to PN532.

use i2cdev::core::I2CDevice;

use i2cdev::linux::LinuxI2CDevice;

use std::io::Result as IOResult;

use std::process::{Command, Output};

use std::thread::sleep;

use std::time::Duration;

pub struct NFCdev {

i2cdev: LinuxI2CDevice,

}

enum Commands {

SAMConfiguration = 0x14,

InListPassiveTarget = 0x4A,

}

fn enable_bus() -> IOResult<Output> {

Command::new("config-pin")

.arg("P9_19")

.arg("i2c")

.output()?;

Command::new("config-pin").arg("P9_20").arg("i2c").output()

}

impl NFCdev {

pub fn new() -> Self {

match enable_bus() {

_ => (),

}

let i2cdev = LinuxI2CDevice::new("/dev/i2c-2",

PN532_ADDRESS.into()).unwrap();

let mut nfc = Self {i2cdev: i2cdev};

match nfc.init_nfc() {

_ => (),

}

nfc

5

}

pub fn init_nfc(&mut self) -> IOResult<()> {

// function to send information frame to PN532

self.send_command_to_nfcdev(&[Commands::SAMConfiguration as u8, 0x01])?;

// expected to receive either ack or error frame

self.sync_packets()

}

}

4.2 Sending Data to PN532
The following function for NFCdev allows the program to send information frames to PN532.

fn send_command_to_nfcdev(&mut self, data: &[u8]) -> IOResult<()> {

let length = data.len() as u8;

let checksum_lcs = !length as u8;

let tfi = 0xd4;

let mut checksum_dcs = tfi;

for i in data {

checksum_dcs = checksum_dcs + i;

}

checksum_dcs = !(checksum_dcs & 0xFF) as u8 + 1;

let mut frame = vec![0x00, 0x00, 0xff, length + 1, checksum_lcs, tfi];

// place data packet into the information frame

frame.extend_from_slice(data);

frame.push(checksum_dcs);

frame.push(0x00);

// send frame to PN532

match self.i2cdev.write(&frame) {

_ => Ok(()),

}

}

6

4.3 Receiving Data from PN532
The following function for NFCdev allows the program to receive information and error frames
from PN532.

fn receive_from_nfcdev(&mut self) -> IOResult<Vec<u8>> {

for _ in 0..10 {

sleep(Duration::from_millis(4));

let mut data = [0u8; 128];

// receive data

self.i2cdev.read(&mut data)?;

let mut index = 0;

// Check if the received data is ack, error, or information frame

for j in 0..data.len() {

match index {

0 | 1 => {

if data[j] == 0x00 {index += 1;continue;}

else {index = 0;}

}

2 => {

if data[j] == 0xFF {index += 1;continue;}

else {

return Err(std::io::Error::new(

std::io::ErrorKind::Other,

"Ack Response Err2"

).into());

}

}

3 => match data[j] {

0x01 => {

return Err(std::io::Error::new(

std::io::ErrorKind::Other,

"App Error 2"

).into());

}

size => {return Ok(

data[j + 3..j + 3 + (size as usize - 1)].to_vec());

}

},

_ => {index = 0;}

}

}

}

Err(std::io::Error::new(std::io::ErrorKind::Other, "timeout").into())

}

7

4.4 Receiving Synchronization Packets from PN532
The following function for NFCdev allows the program to receive ack and error frames to verify if
command has been sent properly.

// function to receive one of the synchronization packets (ack or error)

fn sync_packets(&mut self) -> IOResult<()> {

sleep(Duration::from_millis(1));

for _ in 0..5 {

let mut data = [0u8; 128];

self.i2cdev.read(&mut data)?;

let mut index = 0;

// verify if received packet is ack or error

for j in 0..data.len() {

match index {

0 | 1 => {

if data[j] == 0x00 {index += 1;continue;}

else {index = 0;}

}

2 => {

if data[j] == 0xFF {index += 1;continue;}

else {

return Err(std::io::Error::new(

std::io::ErrorKind::Other,"Ack Response Err1"

).into());

}

}

3 => {

if data[j] == 0x00 {

return Ok(());

} else if data[j] as u8 == 0x01 {

return Err(std::io::Error::new(

std::io::ErrorKind::Other,"App Error 1"

).into());

}

}

_ => {index = 0;}

}

}

}

Err(std::io::Error::new(std::io::ErrorKind::Other, "timeout").into())

}

8

4.5 Getting UID
The following function for NFCdev finds the UID of cards/devices. receive_from_nfcdev() returns
the data packet portion of the information frame.

The data packet output for the InListPassiveTarget has the structure:
[0x4b, # of targets, …(4 bytes), UID Length, UID]

pub fn get_uid(&mut self) -> IOResult<Vec<Vec<u8>>> {

self.send_command_to_nfcdev(&[

Commands::InListPassiveTarget as u8,

0x01, // maximum number of targets

CardTypes::IsoTypeA as u8,

])?;

self.sync_packets()?; // wait to receive ACK

let reply = self.receive_from_nfcdev()?;

let reply_length = reply.len();

let mut index = 6;

let mut id = Vec::new();

let id_length = reply[index] as usize;

index += 1;

if index + id_length > reply_length {

return Ok(Vec::new());

}

id.push(reply[index..index + id_length].to_vec());

Ok(id)

}

4.6 Main Program
The following code prints the UID of cards/devices read by the NFC breakout board assuming
the above code was placed in nfc.rs.

mod nfc;

pub fn main() {

let mut nfc = nfc::NFCdev::new();

println!("UID = {:x?}", nfc.get_uid().unwrap());

}

Output Example: UID = [[a2, f6, 8, a9, 3, f2, 51, 2a]]

9

4.7 Dependencies
Add the i2cdev = "0.4.2" under dependencies in the Cargo.toml file.

5. Troubleshooting
1. The SCL and SDA pins must be set to i2c mode. Check if they are configured for i2c:

(bbg)$ config-pin -q P9_19
(bbg)$ config-pin -q P9_20

This should produce the following output:

In case the program was unable to configure the pins, set the pins to i2c manually:
(bbg)$ config-pin P9_19
(bbg)$ config-pin P9_20

Check if the NFC breakout board is properly connected:
(bbg)$ i2cdetect -y -r 2

You should see the device at address 0x24.

2. Make sure the NFC breakout board is wired to the BBG correctly.
- 3.3V to BBG 3.3V
- GND to BBG GDND
- SDA to BBG P9_20
- SCL to BBG P9_19

10

