How To Use The linux/joystick.h library
Written By: Group Tetris

Introduction

This is a guide for how to capture inputs from the Xbox Controller using C and
linux/joystick.h library. This guide will help you with getting inputs from the 4 buttons on the right
(A, X,Y, B), the right bumper and left bumper.

1. Initialization
a. Include the header linux/joystick.h

b. Open file /dev/input/js0 in read only. If there are multiple joysticks, open files js1,
js2, etc.

deviceRoute = "/dev/input/js@";
js = open(deviceRoute, O_RDONLY);

if (js 1)
perror("Could not open joystick");

2. js_events Explanation

Your controller inputs will be read as a js_event. js_ events are defined as:

struct js_event {
__u32 time;
__s16 value;
__u8 type;
__u8 number;

a) js_event .type

There are 3 types of js_events:

JS_EVENT_BUTTON
JS_EVENT_AXIS

JS_EVENT_INIT




JS_EVENT_INIT will be issued by the driver on open. The more crucial js_events
are: JS_EVENT_BUTTON and JS_EVENT_AXIS, which signify whether a button or a

joystick is used as an input from your controller. These event types can be checked by:

struct js_event event;

read (js, &event, (event));
(event.type)
{

JS_EVENT_BUTTON:

JS_EVENT_AXIS:

b) js_event.number
js_event number corresponds to the button or axis which generated the event.
For our XBox 360 controller, we had the following chart for js_event.type =
JS_EVENT_BUTTON (From the inputs which we used)

js_event.number Corresponding button on controller
0 A
1 B
2 X
3 Y
4 Left Bumper
5 Right Bumper




For js_event.type = JS_EVENT_AXIS, the corresponding axis for js_event

number are listed below:

js_event number Corresponding Axis
0 1st Axis X
1 1st Axis Y
2 2nd Axis X
3 2nd Axis Y

c) Js_event.value
When js_event.type = JS_EVENT_AXIS, the js_event value will be a signed
integer between -32767 and +32767 which represents the position of the joystick along
the axis.
When js_event.type = JS_EVENT_BUTTON, the js_event value will be either a 0

for releasing a button, or 1 for pressing a button.

The following sample prints out a button press, or joystick movement event:

struct js_event event;
read(js, &event, (event));
(event.type)
{

JS_EVENT_BUTTON:

printf("Button %u %s\n", event.number, event.value ? "pressed" : "released");

JS_EVENT_AXIS:

(event—>number == 0)
{
(event—>number % 2 == 0)
printf("X-Axis %d", event->value);

printf("Y-Axis %d", event->value);




3. IOCTLs
You can use ioctl (input/output control) functions in the joystick drivers. For our purposes

we will use 2. But these options are available:

JSTOCGAXES
JSIOCGBUTTONS
JSIOCGVERSION

JSIOCGNAME(len)
JSTOCSCORR
JSTOCGCORR

a) JSIOCGAXES
JSIOCGAXES allows you to read the number of axes used by your controllers. It

can be done via:

char number_of_axes;
ioctl (fd, JSIOCGAXES, &number_of_axes);

Sample code for getting the number of axes on controller:

uint8_t Joystick::get_axis_count()
{

uint8_t axesNum;

if (ioctl(js, JSIOCGAXES, &axesNum) 1)
return 0;

return axesNum;

b) JSIOCGBUTTONS
JSIOCGBUTTONS are similar, in that it allows you to read the number of buttons

to be used by your controller. It is done via:

unsigned int buttons;

ioctl(fd, JSIOCGBUTTONS, &buttons);

Sample code for getting the number of buttons on the controller:



uint8_t Joystick: :get_button_count()
{
uint8_t buttons;

if (ioctl(js, JSIOCGBUTTONS, &buttons) 1)
return 0;

return buttons;

Final Words

Hopefully this guide was helpful in allowing you to use a controller with linux/joystick.
Results will vary based on what controller is being used. We have used an XBox 360 controller.
We highly recommend that you check the references below, and especially the sample code by
Jason White. Happy coding!

Troubleshooting

e |[f the file descriptor returned for the joystick is -1, ensure that you are opening the correct
file. Try listing the items in the /dev/input directory and checking if there are js# listings. If
there are none or some are missing, it may be the case that the controller is faulty.

e |If js_event.type is Axis, and your js_event value is not 0 while the joystick is dead or not

used, it should be recalibrated or adjusted.

References

e Linux joystick support documentation:

https://www.kernel.org/doc/html/latest/input/joydev/index.html

e Joystick input with C++ (abstract SDL joystick input):
https://www.youtube.com/watch?v=vbBEG6SvryA

e Reading joystick/gamepad event on Linux and displaying them:
https://qist.github.com/jasonwhite/c5b2048c15993d285130




