
Controlling DC Motors with L293D Motor Driver

It is dangerous to hook DC motors to the BeagleBone's GPIO pins as the current required can easily exceed the maximum rating of the specifications and damage your board. Therefore we use a L293D motor driver IC to interface with the motors instead. L293D is a very commonly used motor driver, it's essentially a H-bridge circuit in a chip.

via https://en.wikipedia.org/wiki/H-bridge

This document guides the user through

- 1. Wiring 2x DC motors with to the motor driver and an external battery source
- 2. Controlling the motors through beaglebone GPIO pins

Required components

- 6 free GPIO pins on BeagleBone (in this guide we use P8_7 to P8_12)
- 1x L293D Motor Driver
- 1x or 2x DC Motor(s)
- 1x External power source

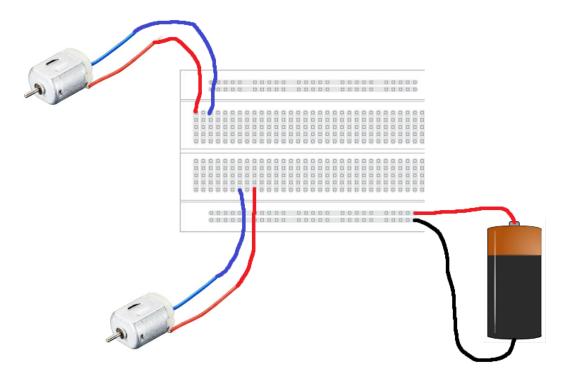
Table of Contents

- 1. Wiring guide
 - 1.1 DC Motors and battery
 - 1.2 Motor driver and BeagleBone
- 2. Operation Reference
- 3. Sample C program to drive motors

1. Wiring Guide

This section hooks cover physical wiring of all components

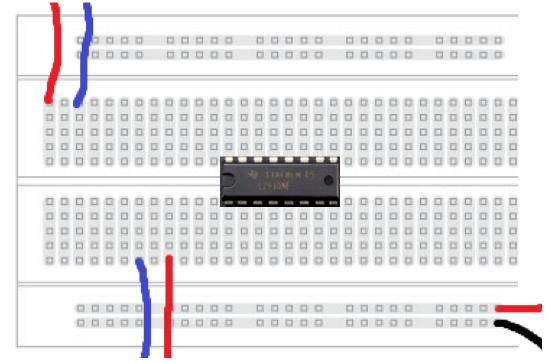
1.1 DC Motors and battery

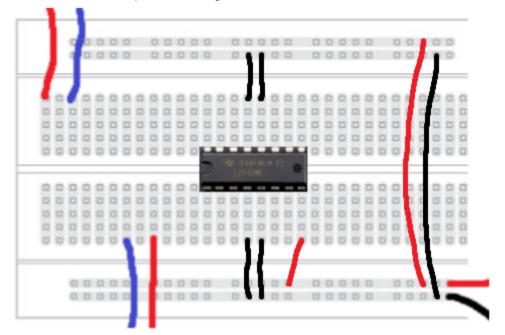

Since each L293D motor driver can control up to two DC motors at the same time, this guide will assume you have two DC motors to use.

1. Wire up DC motors

DC motors have two terminals, wire them to the breadboard. We aren't concerned with positive/negative at this stage since the motor will just turn the opposite direction if you've flipped them.

 Wire up external power source Motor driver supports 4.5V to 36V. You can either use batteries or a usb battery bank, though you'll have to learn to splice a USB cable on your own. Connect the external power source to the side lanes of the breadboard.


At this point your setup should look something like this:


1.2 Motor Driver and BeagleBone

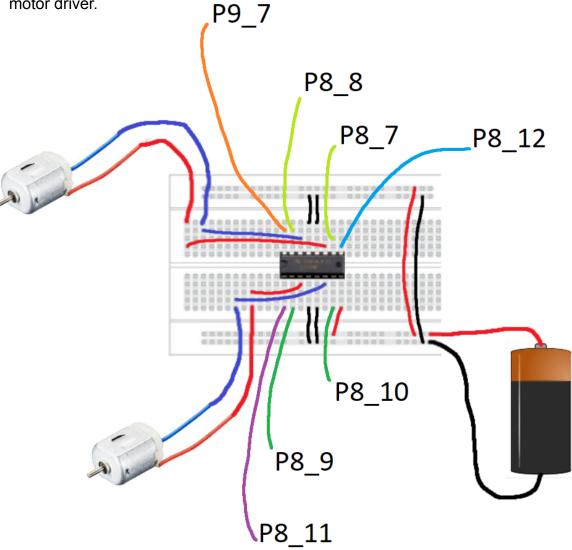
There will be a lot of wiring in this section.

 Drop the motor driver chip in the middle of the breadboard. Orientation matters so make sure the notch on the side is facing left.

2. Connect external power and ground

3. Connect Motors

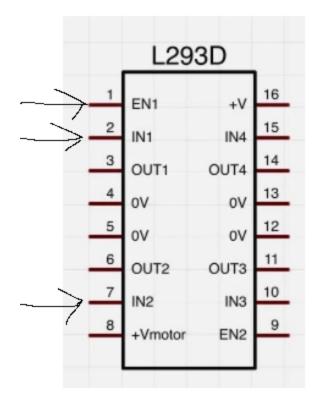
4. Connect to BeagleBone


Reference the below diagrams to connect all 7 motor driver terminals to the BeagleBone.

First connect 7 wires to the beaglebone expansion headers.

	P	9			P	8	
DGND	1	2	DGND	DGND	1	2	DGND
VDD_3V3	З	4	VDD_3V3	GPIO_38	з	4	GPIO_39
VDD_5V	5	6	VDD_5V	GPIO_34	5	6	GPIO_35
SYS_5V	7	8	SYS_5V	GPIO_66	7	8	GPIO_67 🛑
PWR_BUT	9	10	SYS_RESETN	GPIO_69	9	10	GPIO_68 🛛 🗲
GPIO_30		12		GPIO_45	11	12	
GPIO_31	13	14	-	GPIO_23	13		GPIO_26
GPIO_48		16	-	GPIO_47	15	16	_
GPIO_5		18		GPIO_27	17		GPIO_65
I2C2_SCL	19	20	I2C2_SDA	GPIO_22			
GPIO_3	21	22		GPIO_62	21		GPIO_37
GPIO_49		24		GPIO_36			GPIO_33
GPIO_117		26	_	GPIO_32	25		GPIO_61
GPIO_115		28		GPIO_86			GPIO_88
GPIO_111		30		GPIO_87	29		GPIO_89
GPIO_110		32		GPIO_10			GPIO_11
AIN4	33	34		GPIO_9	33		GPIO_81
AIN6	35	36		GPIO_8	35		GPIO_80
AIN2			AIN3	GPIO_78	37		GPIO_79
AINO	39	40		GPIO_76			GPIO_77
GPIO_20		42		GPIO_74	41		GPIO_75
DGND	43	44		GPIO_72			GPIO_73
DGND	45	46	DGND	GPIO_70	45	46	GPIO_71

Note: wiring BBG pins tend to be very loose, try holding them down when testing.


5. Now connect those wires to the corresponding lanes on the breadboard to the motor driver.

At this point, double check and make sure all 16 terminals on the motor driver are wired to something, and that no terminals are shorted. We have connected all the components in the following manner:

P8_11 - motor1 speed control	Enable 1,2	1	16	Vcc 1	P9_7 - powering motor driver
P8_9 - motor1 direction control	Input 1	2	15	Input 4	P8_8 - motor2 direction control
motor1 terminal+	Output 1	3	14	Output 4	motor2 terminal-
battery ground	GND	4	L293D	GND	battery ground
battery ground	GND	5	12	GND	battery ground
motor1 terminal-	Output 2	6	11	Output 3	motor2 terminal+
P8_10 - motor1 direction control	Input 2	7	10	Input 3	P8_7 - motor2 direction control
battery+	Vcc 2	8	9	Enable 3,4	P8_12 - motor2 speed control

2. Operation Reference

Taking a closer look at the L293D motor driver pin configuration, we can see the only pins controlling motor1 are pin 1, 2, and 7, or EN1, IN1, and IN2. (similarly EN2, IN3, IN4 for motor2)

EN1 is the speed control for the motor

EN1	Motor status			
Low(0)	Motor OFF			
High(1)	Motor ON (100%)			

You can also control the speed of the motor using PWM but we won't cover it in this guide.

IN1 and IN2 controls the direction of the motor

IN1	IN2	Motor Direction
Low(0)	Low(0)	Motor OFF
High(1)	Low(0)	Forward
Low(0)	High(1)	Backward
High(1)	High(1)	Motor OFF

You should now be able to create your own motor controller program by configuring BeagleBone's GPIO pins to the 6 speed and control pins on the motor driver.

3. Sample C program to drive motors

```
#include <stdlib.h>
#include <stdio.h>
// P8 7 -> IN3 on L293D
#define D66 "/sys/class/gpio/gpio66/direction"
#define V66 "/sys/class/gpio/gpio66/value"
// P8 8 -> IN4 on L293D
#define D67 "/sys/class/gpio/gpio67/direction"
#define V67 "/sys/class/gpio/gpio67/value"
// P8 12 -> EN2 on L293D
#define D44 "/sys/class/gpio/gpio44/direction"
#define V44 "/sys/class/gpio/gpio44/value"
void initializeMotorDriver(void) {
    exportPin(66);
    exportPin(67);
    exportPin(44);
   writeToFile(D66, "out");
   writeToFile(D67, "out");
   writeToFile(D44, "out");
    //optional: implement pwm speed control
   writeToFile(V44, "1");
}
void setMotor(int mode) {
    // 0 = off, 1 = forward, 2 = backward
    switch (mode)
    {
    case 0:
       writeToFile(V66, "0");
       writeToFile(V67, "0");
       break;
    case 1:
       writeToFile(V66, "0");
       writeToFile(V67, "1");
       break;
    case 2:
       writeToFile(V66, "1");
       writeToFile(V67, "0");
       break;
    default:
        break;
    }
}
```