
How-To Guide for 16x2 Character LCD Through GPIO

This guide will demonstrate how to wire a 16x2 Character LCD to a BeagleBone Green (BBG)
and interface with it through GPIO. Similar online guides are written for Arduinos, and older
student guides are either written for older BeagleBones or use a different interface from GPIO.
See the references section for secondary resources.

Wiring [1]
The LCD has 16 pins as shown in this diagram. In this guide, the pins will be referred to by
name, as well as their pin number relative to the left and right labels (1, 16). The purpose of
each pin will be explained as they are connected to the BBG when it is needed.

LCD Pin Labels (1 - 16, left to right) [1]

First, we will wire up the LCD backlight.
1. Attach the LCD screen to the breadboard.

The LCD attached to the breadboard
2. Connect a SYS_5V pin on the BBG to the breadboard’s red rail, and a GND pin to the

breadboard’s blue rail.
3. Connect the LCD ‘K’ pin (16) to the blue rail. The K pin is the ground for the backlight.
4. To provide power to the backlight, connect the LCD ‘A’ pin (15) to the red rail with a 10

ohm resistor. Without this resistor, you may burn out the backlight [2]. If you don’t have



a 10 ohm resistor, you can try using stronger resistors instead, but the backlight may
become too dim.

The LCD backlight wiring

Once you have double checked that your wiring is correct, plug in your BBG to see the backlight
power on.

The backlight power on.
Backlight not powering on?

● Double check that you have wired the BBG power (SYS_5V) and ground correctly.
● Double check that you have connected the resistor.
● Try SYS_3V3 in case it still does not work: the backlight will be dimmer however.

Next, we will attach the contrast potentiometer (pot).
5. Attach the contrast pot to the breadboard.



6. The contrast pot has 3 pins. Connect the left and right pins to the red and blue rail
(which side doesn’t matter).

7. Connect the middle pin to the LCD ‘V0’ pin (3). The V0 pin handles the contrast of the
character display against the backlight. This connection allows the pot to control the
voltage.

The LCD contrast pot

Now, we will wire up the LCD logic.
8. Connect the LCD ‘VSS’ pin (1) to the blue rail (ground).
9. Connect the LCD ‘VDD’ pin (2) to the red rail (voltage).

The contrast and logic can now be tested. Plug in your BBG again and try twisting the contrast
pot. You should be able to see rectangles appear in the top line.

These rectangles should appear when you twist the pot
The rectangles not appearing?

● Double check that you have wired the LCD logic correctly.



● Try SYS_3V3 in case it still does not work.

GPIO Pin Table [3]

Finally, we will connect the LCD databus pins. The LCD has 10 databus pins, but we will only
need to connect 6 pins (more on this later). For our project, we were able to use these pins:

Pin Number GPIO Number LCD Pin

P9_15 GPIO 48 D7

P9_27 GPIO 115 D6

P8_7 GPIO 66 D4

P8_8 GPIO 67 E

P8_9 GPIO 69 D5

P8_10 GPIO 68 RS

The guide will use these pins for instructions.
If some of these pins are unavailable to you, refer to the BBG header tables and the ZenCape
schematic documents to find pins that are not reserved by the BBG or used by the ZenCape.



10. Connect the LCD ‘RW (5)’ pin to the blue rail.
a. The RW pin is used to read values from the LCD. This is not necessary to

operate the LCD effectively, so we avoid using it and pull it to ground.
11. Connect the LCD ‘RS’ pin (4) to P8_10.

a. The RS pin is used to set what message type is sent to the LCD microcontroller:
0 = data (ASCII char), 1 = command (clear display, move cursor)

12. Connect the LCD ‘E’ (6) pin to P8_8.
a. The E pin (enable) is used to inform the LCD microcontroller that there is data in

D4 - D7 to be read.

Next we connect the pins used to communicate the actual data to the LCD.
13. Connect the LCD ‘D4’ (11) pin to P8_7.
14. Connect the LCD ‘D5’ (12) pin to P8_9.
15. Connect the LCD ‘D6’ (13) pin to P9_27.
16. Connect the LCD ‘D7’ (14) pin to P9_15.

Images are shown on the next page…

The LCD D0, D1, D2, and D3 pins are not used. When using all 8 data pins, the LCD is in 8-bit
mode, meaning it reads 8 bits of data by reading a bit from each pin. The LCD can also operate
in 4-bit mode: it reads the upper and lower 4 bits of 8-bit data from D4, D5, D6, and D7 only.

The wiring is now complete. Next, we’ll try testing it by running some sample code.



The RW, RS, and E pins connected

The D4, D5, D6, D7 pins (left image) connected to the BBG (right image)



Sample Code [4]
To test the LCD, we will run the provided C sample code, which will initialize the LCD to 4-bit
operation and display a message. Once you have the code available to the host machine, build
it - it will automatically copy the executable to your public folder, as well as a shell script to
export the necessary pins. In the target, cd to your /mnt/remote/myApps directory, and run the
./export_pins.sh first to export all the GPIO pins needed, then, run ./lcd to test the LCD. You
should see “Hello world!” appear on your LCD:

Inspect the code and the following sections in the guide to understand what’s going on to
initialize the code and write data to the LCD.

Sample code is not working:
● The pins may not have exported correctly: export manually.
● Double check your wiring again - ensure you wired the RW pin to ground.

○ D0, D1, D2, and D3 do not need to be wired at all.
● Experiment with the timing delays between commands - your LCD microcontroller may

need longer delays on certain commands.
● Try other GPIO pins: make sure to update the variables in the code as well.



LCD 4-Bit Operation
The LCD can operate using 4 bits by reading 8-bit data in two halves. First, when the upper bits
of data are present in D4-D7, the LCD will read these bits when the E pin flashes from low to
high to low. The LCD will store these upper bits. Once the lower bits are in, and E is flashed
from low to high to low again, then the LCD will read those lower bits, combine with the upper
bits, and handle the combined 8-bit data accordingly.

But before any real commands or data can be written to the LCD like this however, it needs to
be properly initialized.

Initialization [5]
To start interfacing with the LCD microcontroller, we must initialize it by sending a series of
commands. These commands are sent as a hex number, where each of its 4 bits in binary
correspond to the data pins D4, D5, D6, and D7. D4 holds the least significant bit, and thus
D7 holds the most significant bit, e.g.,

0x03(16) = 0011(2) :

D7 D6 D5 D4

0 0 1 1

When the LCD first starts, it is in 8-bit operation mode, meaning it expects data from pins
D0-D7. In the commands we are about to send however, the lower bits (represented by D0-D3)
are irrelevant, meaning we can initialize to 4-bit operation mode without those pins.

One more important detail to operation: the LCD takes a certain amount of time (usually very
short) to handle each command. If a command is sent while the LCD is still handling a previous
command, then that command will be lost. To deal with this, we simply delay by using a sleep.
The sleep length depends on the specific command. See the LCD microcontroller datasheet [6]
for minimum durations, but we found these to not be exactly accurate, there is room for
experimentation. We provide a recommended timing in the following table:



Initialization Commands:
[5][6]

Command Value Note: Delay

Special
Function Set 1

0x03 The first of three special function sets to reset the
LCD.

5 ms

Special
Function Set 2

0x03 The second of three special function sets to reset
the LCD.

128 us

Special
Function Set 3

0x03 The final of three special function sets to reset the
LCD. After 3 consecutive commands, the LCD
recognizes this as a reset.

128 us

Initial Function
Set

0x02 Convert the LCD to 4-bit operation. 1 ms

‘Real’ Function
Set

0x02
0x08

Set to two-line display and use the 5x8 character
font. See the datasheet [6] for how to configure
these values.

128 us

Display
ON/OFF
Control

0x00
0x08

This command must be called here as part of
initialization: do not configure display yet.

128 us

Clear Display 0x00
0x01

This clears the LCD’s DDRAM addresses that store
data.

64 us

Entry Mode
Set

0x00
0x06

Set the mode of character entry: automatic cursor
increment and shift right as display is written.

128 us

Display
ON/OFF
Control

0x00
0x0F

Turn on the display, displaying the cursor and
configuring the cursor to blink. See the datasheet [6]
for how to configure these values.

64 us

Initialization is now complete. The LCD is fully operational.



References

[1] Adafruit Wiring Guide.
https://learn.adafruit.com/character-lcds/wiring-a-character-lcd
We followed this guide to learn how to wire the LCD, and have adapted parts of this guide for
the BeagleBone instead of an Arduino.

[2] Backlight resistor.
https://electronics.stackexchange.com/questions/82092/just-burned-my-first-lcd-but-why
https://cdn-shop.adafruit.com/datasheets/TC1602A-01T.pdf
The stackexhange discussion provides a computed resistance that we verified and used, which
is based off the operating voltage provided in the datasheet.

[3] GPIO Guide by Brian Fraser.
See course page - URL may not be accessible at the time you access this guide.
The GPIO pin to GPIO number table is used.

[4] Arduino LiquidCrystal library.
https://github.com/arduino-libraries/LiquidCrystal/blob/master/src/LiquidCrystal.cpp
Loosely referenced when writing the sample code.

[5] LCD Initialization.
https://web.alfredstate.edu/faculty/weimandn/lcd/lcd_initialization/lcd_initialization_index.html
Provides a in-depth description for initializing the LCD to both 8-bit and 4-bit modes. See this for
useful command flowcharts for said initialization.

[6] HD44780 Microcontroller Datasheet.
https://cdn-shop.adafruit.com/datasheets/HD44780.pdf
Referenced for finding commands, studying functionalities, and timing delays.

https://learn.adafruit.com/character-lcds/wiring-a-character-lcd
https://electronics.stackexchange.com/questions/82092/just-burned-my-first-lcd-but-why
https://cdn-shop.adafruit.com/datasheets/TC1602A-01T.pdf
https://github.com/arduino-libraries/LiquidCrystal/blob/master/src/LiquidCrystal.cpp
https://web.alfredstate.edu/faculty/weimandn/lcd/lcd_initialization/lcd_initialization_index.html
https://cdn-shop.adafruit.com/datasheets/HD44780.pdf

