
Using C++ in a C program

FlyLikeABeagle

December 7, 2022

1 Introduction

Often a programmer, who is using C, might need a library or feature that is only offered in C++. A
common example is a lambda expression, STL or Opencv. In this guide we will provide steps to use
C++ code in a C program.

2 External Linkage

In the following sections we will be attempting to implement the simple Hello World example. That is,
have a C function call a C++ function that prints to the console Hello World. Consider the following
C++ header file hello.h

1 #ifndef HELLO_WORLD_H_

2 #define HELLO_WORLD_H_

3

4 extern "C" void printMsgToScreen(void);

5

6 #endif

Note the keyword extern "C". This tells the compiler to use external linkage specific to the C
language; it will use C calling conventions and name mangling [1]. The source file hello.cpp should
look like this

1 #include "hello.h"

2 #include <iostream >

3

4 using namespace std;

5

6 extern "C" void printMsgToScreen(void)

7 {

8 cout << "Hello World from a C++ program !" << endl;

9

10 }

Notice the standard C++ library used is iostream and we are printing to the console using
std::cout and not printf().

3 Making a Shared Library

Include the following Makefile in your source directory.

1 SOURCES = hello.cpp

2 TARGETS = hello

3

4 PUBDIR = # Your public directory

5 OUTDIR = $(PUBDIR)
6

7 # Cross compile or not?

8 CROSS_COMP = arm -linux -gnueabihf -

9 CC_CPP = g++

10

11 # Set flags

12 CPP_FLAGS = -c -fPIC

1

13

14 all:

15 $(CC_CPP) $(CPP_FLAGS) -o hello.o $(SOURCES)
16 $(CC_CPP) -shared -o libhello.so hello.o

Line 15 builds the source file hello.cpp into an object file hello.o. Line 16 creates a shared library
file libhello.so using the object file hello.o. This is much like using the library libpthread.so

and linking it using -lpthread.

4 The C Program

Now that we have the C++ source file hello.cpp made as a shared .so file we can directly use the
printMsgToScreen function using the following C code

1 #include <stdlib.h>

2 #include <stdio.h>

3

4 extern void printMsgToScreen(void); // declare the external fucntion for usage.

5

6 int main(int argc , char** argv)

7 {

8 // call the function

9 printMsgToScreen ();

10 return 0;

11 }

Then use the following Makefile in your C source directory.

1 SOURCES = main.c

2 TARGET = main

3

4 PUBDIR = # Your public directory

5

6 OUTDIR = $(PUBDIR)
7

8 # Cross compile?

9 CROSS_TOOL = arm -linux -gnueabihf -

10 CC_C = $(CROSS_TOOL)gcc
11

12 CFLAGS =-Wall -std=c99

13

14 all:

15 $(CC_C) $(SOURCES) -L ./hello -Wall -o $(OUTDIR)/$(TARGET) -lhello

16 export LD_LIBRARY_PATH=$(PUBDIR)/hello /: $LD_LIBRARY_PATH

Note that this Makefile assumes that the hello.o and libhello.so files reside with your C source
files. The -L ./hello command tells the compiler to look for the hello.o object file and we link the
.so file using -lhello. After running make in the terminal you should be able to successfully run
./main.

5 References

[1] ttps://isocpp.org/wiki/faq/mixing-c-and-cpp

2

ttps://isocpp.org/wiki/faq/mixing-c-and-cpp

	Introduction
	External Linkage
	Making a Shared Library
	The C Program
	References

