
Bluetooth Adapter Guide
Connecting and transmitting data from a Bluetooth device to a BeagleBone Green.

By Megan Duclos, Laura Flood, Tanya Nookut, and Kaleigh Toering
Created December 2022

Guide Reasoning
A new Bluetooth guide is needed due to updated Bluetooth libraries and commands. This
guide also includes initial Bluetooth testing and troubleshooting using Linux commands and
data transmission to the BeagleBone.

This document guides the user through:
1. Using Bluetooth libraries from the Linux command line to detect and connect to

Bluetooth devices.
2. C code to detect Bluetooth devices.
3. C code to read data to a BeagleBone server from a Bluetooth client.

Table of Contents

1. Bluetooth Basics 2
2. Bluetooth Connection Using Linux Command Line 3

2.2. Pairing and Connecting to a Bluetooth Device 3
3. Bluetooth Device Detection using C Code 4

3.1. Initialization and Cleanup 4
3.2. Range Output, Device Detection, and Thread 5

4. Cross-Compiling with Bluetooth Setup 7
5. Bluetooth Server Connection and Data Transmission using C Code 7

5.1. Transmission Communication Initialization and Cleanup 7
5.2. Read Data over Bluetooth 8
5.3. Updated Bluetooth Thread 8

6. References 10

Formatting
1. Linux commands for the host start with (host) $.

(host) $ echo “Hello World from Host!”
2. Linux commands for the target start with (bbg) $.

(bbg) $ echo “Hello World from Target!”
3. Commands in the Bluetooth terminal include [bluetooth]# after host or target

notation.
(bbg) $ [bluetooth]# power on

4. Commands in the Bluetooth terminal for a connected device include
[device-name]# after host or target notation.
(bbg) $ [device-name]# info

5. Assume all commands are case-sensitive.

December 2022

1. Bluetooth Basics

Bluetooth allows for wireless detection, connection, and communication between devices in
close proximity. The device which scans and initiates connection in the Bluetooth
relationship is called the client and the device which accepts the connection request is the
server. In this guide, the BeagleBone Green is the client and the user’s device is the server.

To facilitate Bluetooth communication, the Media Access Control (MAC) address of both the
client and the server is needed. Every device has a unique MAC address which is 12
characters long with every two characters separated by usually a colon or hyphen.

01:23:45:67:89:YZ
01-23-45-67-89-YZ

Depending on the device’s operating system, the MAC address may be referred to as the
physical or hardware address as well.

Note: The BeagleBone Green can detect non-android devices and may be able to connect.
However, an android device is recommended and used for this guide.

Page 1 of 10

December 2022

2. Bluetooth Connection Using Linux Command Line

This step-by-step guide lays out how to detect and connect to a Bluetooth device from the
BeagleBone Green using the Linux command line. A Bluetooth USB adapter compatible with
Linux is required for the BeagleBone Green.

2.1. Setting Up the IDE for Bluetooth

1. Install Bluetooth libraries on the target.
(bbg) $ sudo apt update
(bbg) $ sudo apt install bluetooth bluez bluez-tools rfkill

2. Check the Bluetooth adapter is connected. A device with the brand of the USB
adapter should be listed.
(bbg) $ lsusb

3. Ensure Bluetooth is not disabled.
(bbg) $ rfkill

a. If Bluetooth is blocked, unblock it.
(bbg) $ rfkill unblock bluetooth

4. Start the Bluetooth terminal and power on the Bluetooth adapter.
(bbg) $ bluetoothctl
(bbg) $ bluetoothctl show
(bbg) $ [bluetooth]# agent KeyboardOnly
(bbg) $ [bluetooth]# default-agent
(bbg) $ [bluetooth]# power on

5. Troubleshooting
a. If you are unable to install the Bluetooth libraries, ensure the target is

connected to the internet.
b. If the USB adapter is not listed as connected to the BeagleBone Green, try

unplugging and replugging it back in.

2.2. Pairing and Connecting to a Bluetooth Device1

1. Scan for nearby devices on the target.
(bbg) $ [bluetooth]# scan on

2. Find the name of the desired device in the list and note its MAC address (ie.
01:23:45:67:89:YZ).

3. Pair the target to the user’s device.
(bbg) $ [bluetooth]# pair 01:23:45:67:89:YZ
(bbg) $ [bluetooth]# trust 01:23:45:67:89:YZ

4. Connect to the user’s device.
(bbg) $ [bluetooth]# connect 01:23:45:67:89:YZ

5. Check device info of paired device. Device should be paired, trusted, and connected.
(bbg) $ [device-name]# info

6. When done, disconnect from the device and exit the Bluetooth terminal.
(bbg) $ [device-name]# disconnect
(bbg) $ [bluetooth]# exit

7. Troubleshooting

1 Note this section may be replaced with simply connecting to the BeagleBone Green on the user’s device if
only confirming connection is possible is desired.

Page 2 of 10

December 2022

a. If your device does not show up when scanning for devices:
i. Ensure your device’s Bluetooth is on and discoverable. Most devices

are automatically discoverable when Bluetooth is on.
ii. If communicating with the BeagleBone Green using a Virtual Machine

and trying to connect to your native operating system, ensure the
device’s Bluetooth is connected to the native operating system and
not the Virtual machine.

b. If you cannot connect to the device, ensure it is actually paired.
(bbg) $ [bluetooth]# paired-devices

3. Bluetooth Device Detection using C Code

To run the program simply call the initialization and cleanup function in a main function with
a desired delay.
Note: The hcitool and its commands can be used for finding MAC addresses and general
troubleshooting although is not required to complete the guide.

3.1. Initialization and Cleanup

// Assume device already detectable to other devices

// sudo hciconfig hci0 piscan

// Assume MAC address of client and server known

#include <stdio.h>

#include <stdlib.h>

#include <unistd.h>

#include <sys/socket.h>

#include <bluetooth/bluetooth.h>

#include <bluetooth/hci.h>

#include <bluetooth/hci_lib.h>

#include <bluetooth/rfcomm.h>

#include <pthread.h>

#include <stdbool.h>

// Initialize thread IDs

static pthread_t deviceDiscoveryId;

static pthread_mutex_t mutex;

// Initialize module variables

static bdaddr_t bluetoothAdapterID = {{0xAB, 0xCD, 0xEF, 0xGH, 0xIJ, 0xKL}};

// client MAC address

char userIDString[17] = "01:23:45:67:89:YZ"; // server MAC address

static bool userInRange = false;

static bool isDoneRunning = false;

Page 3 of 10

December 2022

// Initializes the Bluetooth module and starts thread. Must be run before

other functions.

void BluetoothServer_init(void)

{

pthread_create(&deviceDiscoveryId, NULL, deviceDiscoveryThread, NULL);

return;

}

// Shuts downBlueTooth module and closes thread

void BluetoothServer_cleanup(void)

{

isDoneRunning = true;

pthread_join(deviceDiscoveryId, NULL);

return;

}

3.2. Range Output, Device Detection, and Thread

// Checks if the user's device is within range

static bool BluetoothServer_isUserInRange(void)

{

bool status = false;

pthread_mutex_lock(&mutex);

status = userInRange;

pthread_mutex_unlock(&mutex);

return status;

}

// This function looks up the Bluetooth device name from the known device

address.

// If successful, function returns 0. If unsuccessful, function returns -1;

static int discoverDevice(void)

{

int dev_id = 0;

dev_id = hci_get_route(&bluetoothAdapterID);

// Open a Bluetooth socket to connect BBG to the Bluetooth adapter

int sock = 0;

sock = hci_open_dev(dev_id);

// Error checking

if (dev_id < 0 || sock < 0)

Page 4 of 10

December 2022

{

perror("opening socket");

exit(1);

}

char name[248] = {0};

bdaddr_t userID;

str2ba(userIDString, &userID);

// Read name from device ID

int rsp_code = hci_read_remote_name(sock, &userID, sizeof(name), name, 0);

close(sock);

return rsp_code;

}

// This thread continuously scans if the user is within range every 1 sec

static void *deviceDiscoveryThread(void *_)

{

int scanPeriod = 1; // s

while (!isDoneRunning)

{

int rsp_code = 0;

rsp_code = discoverDevice();

if (rsp_code < 0)

{

pthread_mutex_lock(&mutex);

userInRange = false;

pthread_mutex_unlock(&mutex);

}

else

{

pthread_mutex_lock(&mutex);

userInRange = true;

pthread_mutex_unlock(&mutex);

}

sleep(scanPeriod);

}

return NULL;

Page 5 of 10

December 2022

}

4. Cross-Compiling with Bluetooth Setup

This step-by-step guide lays out how to set up your environment to compile and run C code
that uses Bluetooth.

1. Install Bluetooth libraries on the host.
(host) $ sudo apt-get update
(host) $ sudo apt-get install libbluetooth-dev

2. On the target check if the Bluetooth library is installed.
(bbg) $ cd /usr/lib/arm-linux-gnueabihf
(bbg) $ ls libbluetooth*

a. If libbluetooth.so not listed, install the library.
(bbg) $ sudo apt-get install libbluetooth-dev

3. The host needs a copy of the .so file from the target in order to cross compile. Copy
the file to the shared NFS mounted folder.
(host) $ mkdir ~/cmpt433/public/bluetooth_lib_BBG
(host) $ chmod a+rw ~/cmpt433/public/bluetooth_lib_BBG
(bbg) $ cd /usr/lib/arm-linux-gnueabihf
(bbg) $ cp libbluetooth.so /mnt/remote/bluetooth_lib_BBG

4. Add a flag for the Bluetooth to your Makefile.
LFLAGS = -L$(HOME)/cmpt433/public/bluetooth_lib_BBG

5. Add the flag and linker to your existing Makefile line with your other flags.
$(LFLAGS) -lbluetooth

5. Bluetooth Server Connection and Data Transmission using C Code

To run the program simply call the overall initialization and cleanup function in a main
function with a desired delay.
Note: Overall initialization, cleanup, and device detection functions the same as Section 3.1.
Note: The client can be built in any desired language, for an example in C code refer to the
BeagleBone Textbook listed in References (Section 5).

5.1. Transmission Communication Initialization and Cleanup

// Initialize data transmission variables

static bool commInProgress = false;

static struct sockaddr_rc adapter_addr = {0}, user_addr = {0};

static int bluetoothSocket = 0;

static int client = 0;

// Connects BlueTooth to user's device

static void bluetoothCommInit(void)

{

// Allocate socket for Bluetooth communication with RFCOMM protocol

Page 6 of 10

December 2022

bluetoothSocket = socket(AF_BLUETOOTH, SOCK_STREAM, BTPROTO_RFCOMM);

// Initialise RFCOMM socket for the Bluetooth adapter a

adapter_addr.rc_family = AF_BLUETOOTH;

// Since there is only one Bluetooth adapter, any Bluetooth adapter

address works

adapter_addr.rc_bdaddr = *BDADDR_ANY;

adapter_addr.rc_channel = (uint8_t)1;

// Bind Bluetooth adapter socket to port 1 (allocate port 1 to the

bluetoothSocket)

bind(bluetoothSocket, (struct sockaddr *)&adapter_addr,

sizeof(adapter_addr));

// Put bluetoothSocket into listening mode, allow only 1 connection

listen(bluetoothSocket, 1);

printf("Listen for a connection...................................\n");

// Accept one client connection

socklen_t usaddr_len = sizeof(user_addr);

// Blocking call that waits for incoming connection request

client = accept(bluetoothSocket, (struct sockaddr *)&user_addr,

&usaddr_len);

char buffer[1024] = {0};

ba2str(&user_addr.rc_bdaddr, buffer);

fprintf(stderr, "Accepted connection from %s\n", buffer);

memset(buffer, 0, sizeof(buffer));

return;

}

// Closes the BlueTooth socket

static void bluetoothCommCleanup(void)

{

// Close connection

close(client);

close(bluetoothSocket);

}

Page 7 of 10

December 2022

5.2. Read Data over Bluetooth

// This function continuously read data

static void bluetoothCommRead(void)

{

int numBytesRead = 0;

char buffer[1024] = {0};

// Read data into a buffer

numBytesRead = read(client, buffer, sizeof(buffer));

// Parse data from the buffer

if (numBytesRead > 0)

{

// Display transmitted data

printf("User’s device says %s.\n", buffer);

}

}

5.3. Updated Bluetooth Thread

// This thread continuously scans if the user is within range every 1 sec

static void *deviceDiscoveryThread(void *_)

{

int scanPeriod = 1; // s

while (!isDoneRunning)

{

int rsp_code = 0;

rsp_code = discoverDevice();

if (rsp_code < 0)

{

pthread_mutex_lock(&mutex);

userInRange = false;

pthread_mutex_unlock(&mutex);

// If a bluetoothCommThread exists, destroy thread

if (commInProgress)

{

commInProgress = false;

bluetoothCommCleanup();

}

Page 8 of 10

December 2022

}

else

{

pthread_mutex_lock(&mutex);

userInRange = true;

pthread_mutex_unlock(&mutex);

// If communication is not in progress, initialise new socket

connection

if (!commInProgress)

{

bluetoothCommInit();

}

if (client > 0)

{

commInProgress = true;

bluetoothCommRead();

}

}

sleep(scanPeriod);

}

return NULL;

}

6. References

Old Bluetooth Guide from CMPT433 Fall 2015
https://opencoursehub.cs.sfu.ca/bfraser/grav-cms/cmpt433/links/files/2015-student-howto
s/BBBluetoothGuide.pdf

How To Connect To Bluetooth Device from Linux Terminal by Computing for Geeks
https://computingforgeeks.com/connect-to-bluetooth-device-from-linux-terminal/

Exploring BeagleBone 2nd Ed, by Derek Molloy, 2019.

Bluetooth Essentials for Programmers 1st Edition by Albert S. Huang

Page 9 of 10

https://opencoursehub.cs.sfu.ca/bfraser/grav-cms/cmpt433/links/files/2015-student-howtos/BBBluetoothGuide.pdf
https://opencoursehub.cs.sfu.ca/bfraser/grav-cms/cmpt433/links/files/2015-student-howtos/BBBluetoothGuide.pdf
https://computingforgeeks.com/connect-to-bluetooth-device-from-linux-terminal/

